DOI QR코드

DOI QR Code

Rapid Detection Methods for Biogenic Amines in Foods

식품 내 바이오제닉아민 신속검출기술 개발 동향

  • Lee, Jae-Ick (Department of Food & Biotechnology, Korea University) ;
  • Kim, Young-Wan (Department of Food & Biotechnology, Korea University)
  • 이재익 (고려대학교 식품생명공학과) ;
  • 김영완 (고려대학교 식품생명공학과)
  • Received : 2011.11.02
  • Accepted : 2011.12.23
  • Published : 2012.04.30

Abstract

Biogenic amines have been used as chemical indicators to estimate bacterial spoilage of foods, particularly fish and fish products, cheese, and fermented foods. So far many chromatography methods have been developed to detect biogenic amines in foods. Although these instrumental analyses exhibit good sensitivity, they cannot be used as rapid detection methods due to the chemical treatment of the samples and the time-consuming process involved. For the rapid and simple detection of biogenic amines, enzyme linked immunosorbent assay kits are commercially available. In addition, analytical systems with enzyme-based amperometric biosensor detection have been increasingly developed. The biosensors used to detect the biogenic amines are based on the action of either amine oxidases or amine dehydrogenases that catalyzes the oxidative deamination of biogenic amines to the corresponding aldehydes and ammonia. This review mainly focused on the principle, development, and applications of the detection methods for rapid detection of biogenic amines in foods.

BA은 치즈, 와인, 젓갈, 소시지, 된장 등 미생물에 의한 발효과정을 거치는 식품뿐만 아니라 채소류, 과일, 육류와 같은 비발효 식품군에서도 발견된다. 식품 내 BA 오염에 대한 관리를 목적으로 제조공정 및 유통과정에서 신속하게 다량의 시료를 분석하고 제품에 대한 항시 모니터링 기술이 요구된다. 이를 위해 BA 특이항체 및 BA 분해효소를 이용하는 BA 검출 및 센싱 기술이 개발되고 있다. HisN 특이 항체를 이용한 ELISA 키트는 상용화 되었으며 다양한 식품에 적용되고 있다. 산화적 탈아미노반응을 촉매하는 아민산화효소는 항체기반의 ELISA 방식에 비해 다양한 BA 분석에 사용되고 있으며, 효소반응에 의해 생성되는 $H_2O_2$의 산화환원반응에 의해 발생하는 전류를 측정함으로써 BA의 함량을 정량할 수 있는 전류측정식 바이오센서 개발에 적용되고 있다. BA 신속검출을 위한 바이오센서의 개발 연구 동향에 발맞추어 국내 전통발효식품에 적합한 기술개발이 요구되며, 산업현장 적용 연구를 거쳐 국내 전통발효식품의 안전성을 확보해야 할 것으로 판단된다.

Keywords

References

  1. Halasz A. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Tech. 5: 42-49 (1994) https://doi.org/10.1016/0924-2244(94)90070-1
  2. Gerner EW, Meyskens FL Jr. Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer 4: 781-792 (2004) https://doi.org/10.1038/nrc1454
  3. Igarashi K, Ito K, Kashiwagi K. Polyamine uptake systems in Escherichia coli. Res. Microbiol. 152: 271-278 (2001) https://doi.org/10.1016/S0923-2508(01)01198-6
  4. Tayler SL. Histamine food poisoning: Toxicology and clinical aspects. Crit. Rev. Toxicol. 17: 91-128 (1986) https://doi.org/10.3109/10408448609023767
  5. Silla Santos MH. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 29: 213-231 (1996) https://doi.org/10.1016/0168-1605(95)00032-1
  6. Bills DD, Hildrum KI, Scanlan RA, Libbey LM. Potential precursors of N-nitrosopyrrolidine in bacon and other fried foods. J. Agr. Food Chem. 21: 876-877 (1973) https://doi.org/10.1021/jf60189a029
  7. Ochiai M, Wakabayashi K, Nagao M, Sugimura T. Tyramine is a major mutagen precursor in soy sauce, being convertible to a mutagen by nitrite. Gann 75: 1-3 (1984)
  8. Lehane L, Olley J. Histamine fish poisoning revisited. Int. J. Food Microbiol. 58: 1-37 (2000) https://doi.org/10.1016/S0168-1605(00)00296-8
  9. Bodmer S, Imark C, Kneubuhl M. Biogenic amines in foods: Histamine and food processing. Inflamm. Res. 48: 296-300 (1999) https://doi.org/10.1007/s000110050463
  10. Caston JC, Eaton CL, Gheorghuii BP, Ware LL. Tyramine induced hypertensive episodes, panic attacks in hereditary deficient monoamine oxidase patients: Case reports. J. S. C. Med. Assoc. 98: 187-192 (2002)
  11. Food and Drug Administration. Decomposition and histamine-raw frozen tuna and mahi-mahi; canned tuna; and related species; availability of revised compliance policy guide. Federal Registration 149: 39754-39756 (1995)
  12. Nout MJR. Fermented foods and food safety. Food Res. Int. 27: 291-298 (1994) https://doi.org/10.1016/0963-9969(94)90097-3
  13. Onal A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 103: 1475-1486 (2007) https://doi.org/10.1016/j.foodchem.2006.08.028
  14. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernndez M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64: S95-S100 (2010) https://doi.org/10.1038/ejcn.2010.218
  15. Mah JH, Chang YH, Hwang HJ. Paenibacillus tyraminigenes sp. nov. isolated from Myeolchi-jeotgal, a traditional Korean salted and fermented anchovy. Int. J. Food Microbiol. 127: 209-214 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.07.002
  16. Naila A, Flint S, Fletcher G, Bremer P, Meerdink G. Control of biogenic amines in food-existing and emerging approaches. J. Food Sci. 75: R139-R150 (2010) https://doi.org/10.1111/j.1750-3841.2010.01774.x
  17. Cho TY, Han GH, Bahn KN, Son YW, Jang MR, Lee CH, Kim SH, Kim DB, Kim SB. Evaluation of biogenic amines in Korean commercial fermented foods. Korean J. Food Sci. Technol. 38: 730-737 (2006)
  18. Kim HH, Ahn HJ, Yook HS, Park HJ, Byun MW. Biogenic amines content in commerial Korean traditional fermented soybean paste. Korean J. Food Sci. Technol. 33: 682-685 (2001)
  19. Lee TH, Kim JH, Lee SS. Analysis of microbiological contaimination and biogenic amines content in traditional and commercial doenjang. J. Fd. Hyg. Safety 24: 102-109 (2009)
  20. Mah JH, Han HK, Oh YJ, Kim MG, Hwang HJ. Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem. 79: 239-243 (2002) https://doi.org/10.1016/S0308-8146(02)00150-4
  21. Fernndez M, del Ro B, Linares DM, Martn MC, Alvarez MA. Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: use in cheese production. J. Dairy Sci. 89: 3763-3769 (2006) https://doi.org/10.3168/jds.S0022-0302(06)72417-1
  22. Bjornsdottir-Butler K, Jones JL, Benner R, Burkhardt W. Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food Microbiol. 28: 356-363 (2011) https://doi.org/10.1016/j.fm.2010.06.013
  23. Rogers PL, Staruszkiewicz WF. Histamine test kit comparison. J. Aquat. Food Prod. Technol. 9: 5-17 (2000)
  24. Kim TK, Lee JI, Kim JH, Mah JH, Hwang HJ, Kim YW. Comparison of ELISA and HPLC methods for the determination of biogenic amines in commercial doenjang and gochujang. Food Sci. Biotechnol. 20: 1747-1750 (2011) https://doi.org/10.1007/s10068-011-0241-0
  25. Lupo A, Mozola M. Validation study of a rapid ELISA for detection of histamine in tuna. J. AOAC Int. 94: 886-899 (2011)
  26. Aygn O, Schneider E, Scheuer R, Usleber E, Gareis M, Mrtlbauer E. Comparison of ELISA and HPLC for the determination of histamine in cheese. J. Agr. Food Chem. 47: 1961-1964 (1999) https://doi.org/10.1021/jf980901f
  27. Marcobal A, Polo MC, Martn-Alvarez PJ, Moreno-Arrbas MV. Biogenic amine content of red Spanish wines: Comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. Food Res. Int. 38: 387-394 (2005) https://doi.org/10.1016/j.foodres.2004.10.008
  28. Li Y, Kobayashi M, Furui K, Soh N, Nakano K, Imato T. Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction. Anal. Chim. Acta 576: 77- 83 (2006) https://doi.org/10.1016/j.aca.2006.01.078
  29. Hacisalihoglu A, Jongejan JA, Duine JA. Distribution of amine oxidases and amine dehydrogenases in bacteria grown on primary amines and characterization of the amine oxidase from Klebsiella oxytoca. Microbiol. 143: 505-512 (1997) https://doi.org/10.1099/00221287-143-2-505
  30. Roh JH, Suzuki H, Azakami H, Yamashita M, Murooka Y, Kumagai H. Purification, characterization, and crystallization of monoamine oxidase from Escherichia coli K-12. Biosci. Biotech. Bioch. 58: 1652-1656 (1994) https://doi.org/10.1271/bbb.58.1652
  31. Ota H, Tamezane H, Sasano Y, Hokazono E, Yasuda Y, Sakasegawa S, Imamura S, Tamura T, Osawa S. Enzymatic characterization of an amine oxidase from Arthrobacter sp. used to measure phosphatidylethanolamine. Biosci. Biotech. Bioch. 72: 2732-2738 (2008) https://doi.org/10.1271/bbb.80365
  32. Choi YH, Matsuzaki R, Fukui T, Shimizu E, Yorifuji T, Sato H, Ozaki Y, Tanizawa K. Copper/topa quinone-containing histamine oxidase from Arthrobacter globiformis. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor. J. Biol. Chem. 270: 4712-4720 (1995) https://doi.org/10.1074/jbc.270.9.4712
  33. Sekiguchi Y, Makita H, Yamamura A, Matsumoto K. A thermostable histamine oxidase from Arthrobacter crystallopoietes KAIT-B-007. J. Biosci. Bioeng. 97: 104-110 (2004) https://doi.org/10.1016/S1389-1723(04)70176-0
  34. Di Fusco M, Federico R, Boffi A, Macone A, Favero G, Mazzei F. Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal. Bioanal. Chem. 401: 707-716 (2011) https://doi.org/10.1007/s00216-011-5131-z
  35. Vianello F, Di Paolo ML, Stevanato R, Gasparini R, Rigo A. Purification and characterization of amine oxidase from soybean seedlings. Arch. Biochem. Biophys. 307: 35-39 (1993) https://doi.org/10.1006/abbi.1993.1556
  36. Kim M, Okajima T, Kishishita S, Yoshimura M, Kawamori A, Tanizawa K, Yamaguchi H. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase. Nat. Struct. Biol. 9: 591-596 (2002)
  37. Bakke M, Sato T, Ichikawa K, Nishimura I. Histamine dehydrogenase from Rhizobium sp.: Gene cloning, expression in Escherichia coli, characterization and application to histamine determination. J. Biotechnol. 119: 260-271 (2005) https://doi.org/10.1016/j.jbiotec.2005.04.005
  38. Limburg J, Mure M, Klinman JP. Cloning and characterization of histamine dehydrogenase from Nocardioides simplex. Arch. Biochem. Biophys. 436: 8-22 (2005) https://doi.org/10.1016/j.abb.2004.11.024
  39. Chen L, Doi M, Durley RC, Chistoserdov AY, Lidstrom ME, Davidson VL, Mathews FS. Refined crystal structure of methylamine dehydrogenase from Paracoccus denitrificans at 1.75 A resolution. J. Mol. Biol. 276: 131-149 (1998) https://doi.org/10.1006/jmbi.1997.1511
  40. Sukumar N, Chen ZW, Ferrari D, Merli A, Rossi GL, Bellamy HD, Chistoserdov A, Davidson VL, Mathews FS. Crystal structure of an electron transfer complex between aromatic amine dehydrogenase and azurin from Alcaligenes faecalis. Biochemistry 45: 13500-13510 (2006) https://doi.org/10.1021/bi0612972
  41. Wilmot CM, Davidson VL. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Curr. Opin. Chem. Biol. 13: 469-474 (2009) https://doi.org/10.1016/j.cbpa.2009.06.026
  42. Holt A, Palcic MM. A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nat. Protoc. 1: 2498- 2505 (2006) https://doi.org/10.1038/nprot.2006.402
  43. Sato T, Horiuchi T, Nishimura I. Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. Anal. Biochem. 346: 320-326 (2005) https://doi.org/10.1016/j.ab.2005.09.005
  44. Yeh CY, Lin SJ, Hwang DF. Biogenic amines, histamine and label of dressed fried fish meat products in Taiwan. Food Control 17: 423-428 (2006) https://doi.org/10.1016/j.foodcont.2005.02.002
  45. Barthelmebs L, Calas-Blanchard C, Istamboulie G, Marty JL, Noguer T. Biosensors as analytical tools in food fermentation industry. Adv. Exp. Med. Biol. 698: 293-307 (2010) https://doi.org/10.1007/978-1-4419-7347-4_22
  46. Yano Y, Yokoyama K, Tamiya E, Karube I. Direct evaluation of meat spoilage and the progress of aging using biosensors. Anal. Chim. Acta 320: 269-276 (1996) https://doi.org/10.1016/0003-2670(95)00543-9
  47. Xu CX, Marzouk SA, Cosofret VV, Buck RP, Neuman MR, Sprinkle RH. Development of a diamine biosensor. Talanta 44: 1625-1632 (1997) https://doi.org/10.1016/S0039-9140(97)00067-2
  48. Draisci R, Volpe G, Lucentini L, Cecilia A, Federico R, Palleschi G. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem. 62: 225-232 (1998) https://doi.org/10.1016/S0308-8146(97)00167-2
  49. Hibi T, Senda M. Enzyme assay of histamine by amperometric detection H2O2 with a peroxidase-base sensor. Biosci. Biotech. Bioch. 64: 1963-1966 (2000) https://doi.org/10.1271/bbb.64.1963
  50. Niculescu M, Frbort I, Pec PPG, Mattiasson B, Csregi E. Amine oxidase based amperometric biosensors for histamine detection. Electroanal. 12: 369-375 (2000) https://doi.org/10.1002/(SICI)1521-4109(20000301)12:5<369::AID-ELAN369>3.0.CO;2-J
  51. Lange J, Wittmann C. Enzyme sensor array for the determination of biogenic amines in food samples. Anal. Bioanal. Chem. 371: 276-283 (2002)
  52. Iwaki S, Ogasawara M, Kurita R, Niwa O, Tanizawa K, Ohashi Y, Maeyama K. Real-time monitoring of histamine released from rat basophilic leukemia (RBL-2H3) cells with a histamine microsensor using recombinant histamine oxidase. Anal. Biochem. 304: 236-243 (2002) https://doi.org/10.1006/abio.2002.5598
  53. Alonso-Lomillo MA, Domnguez-Renedo O, Matos P, Arcos-Martnez MJ. Disposable biosensors for determination of biogenic amines. Anal. Chim. Acta 665: 26-31 (2010) https://doi.org/10.1016/j.aca.2010.03.012
  54. Habermüller K, Mosbach M, Schuhmann W. Electron-transfer mechanisms in amperometric biosensors. Fresenius J. Anal. Chem. 366: 560-568 (2000) https://doi.org/10.1007/s002160051551
  55. Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron. 21: 389-407 (2005) https://doi.org/10.1016/j.bios.2004.12.001
  56. Zeng K, Tachikawa H, Zhu Z, Davidson VL. Amperometric detection of histamine with a methylamine dehydrogenase polypyrrole- based sensor. Anal. Chem. 72: 2211-2215 (2000) https://doi.org/10.1021/ac9911138
  57. Zhu Z, Sun D, Davidson VL. Conversion of methylamine dehydrogenase to a long-chain amine dehydrogenase by mutagenesis of a single residue. Biochemistry 39: 11184-11186 (2000) https://doi.org/10.1021/bi001568n
  58. Bao L, Sun D, Tachikawa H, Davidson VL. Improved sensitivity of a histamine sensor using an engineered methylamine dehydrogenase. Anal. Chem. 74: 1144-1148 (2002) https://doi.org/10.1021/ac0106086