DOI QR코드

DOI QR Code

Development of Hijiki-based Edible Films Using High-pressure Homogenization

고압 균질기를 이용한 가식성 톳 필름 개발

  • Lee, Han-Na (Department of Food Science and Technology, Seoul Women's University) ;
  • Min, Sea-Cheol (Department of Food Science and Technology, Seoul Women's University)
  • 이한나 (서울여자대학교 식품공학과) ;
  • 민세철 (서울여자대학교 식품공학과)
  • Received : 2011.09.23
  • Accepted : 2012.01.18
  • Published : 2012.04.30

Abstract

Edible biopolymer films were developed from hijiki ($Hizikia$ $fusiforme$), using a high-pressure homogenization (HPH). Effects of pressure and pass number of HPH on color, tensile, moisture barrier properties, flavor profiles, and microstructure of hijiki films were investigated. A hydrocolloid of hijiki was processed by HPH at 69, 103, or 152 MPa with 1, 2, or 3 passes. A hijiki-base film was formed by drying a film-forming solution which was prepared by mixing of the HPH-processed suspension with glycerol and Polysorbate 20. Tensile strength and elastic modulus increased with increasing HPH pressure. Uniformity of the films increased as the pressure of HPH with 1 pass increased and the number of pass increased at 152 MPa. Water vapor permeability ($2.1-3.3g{\cdot}mm/kPa{\cdot}h{\cdot}m^2$) and water solubility (0.4-1.0%), which are relatively low compared to those of many other edible films, show the potential that hijiki-base films are applied to the range of low to intermediate moisture food as wrapping or coating.

톳으로부터 HPH를 이용해 식품에 적용 가능성이 있는 가식성 필름을 제작할 수 있었다. HPH 처리 압력의 증가는 필름의 강도와 깨짐성을 증가시켰고, 단면이 조밀하고 균일한 필름을 형성시켰다. HPH의 처리 횟수의 증가 또한 필름의 단면을 조밀하게 하였다. 개발된 톳 필름은 보고된 많은 다른 생고분자 필름들에 비해 상대적으로 강도, 깨짐성, 그리고 수분 저항력이 낮아 코팅 또는 롤을 비롯한 필름 형태로 건조 식품 또는 중간 수분 식품에 적용될 수 있는 가능성을 보여주었다.

Keywords

References

  1. Kester JJ, Fennenma O. Edible films and coatings: A review. Food Technol. 40: 47-59 (1986)
  2. Krochta JM, Mulder-Johnston CD. Edible and biodegradable polymer films. Food Thechnol. 51: 61-74 (1997)
  3. Gennadios A, Weller CL, Testin RF. Property modification of wheat, gluten-based films. Trans. ASAE 36: 465-470 (1993) https://doi.org/10.13031/2013.28360
  4. Ara J, Sultana V, Qasim R, Ehteshamu-Haque S, Ahmad VU. Biological activity of Spatoglossum asperum: A brown alga. Phytother. Res. 19: 618-623 (2005) https://doi.org/10.1002/ptr.1699
  5. Bae SJ, Choi YH. Methanol extract of the seaweed Gloiopeltis furcate induces G2/Marrest and inhibits cyclooxygenase-2 activity in human hepatocarcinoma HepG2 cells. Phytother. Res. 21: 52- 57 (2007) https://doi.org/10.1002/ptr.2020
  6. Kang KA, Bu HD, Park DS, Go GM, Jee Y, Shin T, Hyun JW. Antioxidant activity of ethanol extract of Callophyllis japonica. Phytother. Res. 19: 506-510 (2005) https://doi.org/10.1002/ptr.1692
  7. Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44: 1144-1150 (2006) https://doi.org/10.1016/j.fct.2006.02.002
  8. Li Bo, Wei XJ, Suna JL, Xub SY. Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohyd. Res. 341: 1135-1146 (2006) https://doi.org/10.1016/j.carres.2006.03.035
  9. Lahaye M, Kaeffer B. Seaweed dietary fibers: Structure, physiochemical, and biological properties relevant to intestinal physiology. Sci. Aliment. 17: 563-584 (1997)
  10. Mabeau S, Kloareg B. Isolation and analysis of the cell of brown algae: Fucus spiralis, F. Ceranodies, F. serratus, Bifurcaria bifuracata, and Laminaria digita. J. Exp. Bot. 194: 1573-1580 (1987)
  11. Kim KI, Seo HD, Lee HS, Cho HY, Yang HC. Studies on the blood anticoagulant polysaccharide isolated from hot water extracts of Hizikia fusiforme. J. Food Sci. Nutr. 27: 1204-1210 (1998)
  12. Siriwardhana N, Jeon YJ, Kim SH, Ha JH, Heo SJ, Lee KW. Enzymatic hydrolysis for effective extraction of antioxidative compounds from Hizikia fusiformis. Algae 19: 59-68 (2004) https://doi.org/10.4490/ALGAE.2004.19.1.059
  13. Rhim JW, Kim JH. Preparation of bio-degradable films using various marine algae powder. Korean J. Food Sci. Technol. 36: 69- 74 (2004)
  14. Bouaouina H, Desrumaux A, Loisel C, Legrand J. Functional properties of whey proteins as affected by dynamic high-pressure treatment. Int. Dairy J. 16: 275-284 (2006) https://doi.org/10.1016/j.idairyj.2005.05.004
  15. Hayes MG, Kelly AL. High pressure homogenization of raw whole bovine milk: (a) Effect on fat globule size and other properties. J. Dairy Res. 70: 297-305 (2003) https://doi.org/10.1017/S0022029903006320
  16. Kang HJ, Min SC. Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. Food Sci. Technol. 43: 903-909 (2010)
  17. Sanchex C, Pouliot M, Gauthier SF, Paquin P. Thermal aggregation of whey protein isolate containing microparticulated or hydrolyzed whey proteins. J. Agr. Food Chem. 45: 2384-2392 (1997) https://doi.org/10.1021/jf970061p
  18. McClements DJ. Food Emulsions: Principles, Practices, and Techniques. CRC Press, Boca Raton, FL, USA. pp. 515-543 (2005)
  19. Banerjee R, Chen H, Wu J.Milk protein-based edible film mechanical strength changes due to ultrasound process. J. Food Sci. 61: 824-828 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb12211.x
  20. ASTM. Standard test method for tensile properties of thin plastic sheeting. D822-01. American Society for Testing and Materials, Philadelphia, PA, USA (1997)
  21. McHugh TH, Avena-Bustillos R, Krochta JM. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  22. Hong EJ, Son HJ, Kang JH, Noh BS. Analysis of binding trimethylamine with rice-washed solution using electronic nose based on mass spectrometer. Korean J. Food Sci. Technol. 41: 509-514 (2009)
  23. Cruz N, Capellas M, Hernandez M, Trujillo AJ, Guamis B, Ferragut V. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical, and microstructural characteristics. Food Res. Int. 40: 725-732 (2007) https://doi.org/10.1016/j.foodres.2007.01.003
  24. Gontard N, Guilbert S, Cuq JL. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J. Food Sci. 58: 206-211 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb03246.x
  25. Yang HJ, Noh BS, Kim JH, Min SC. Effect of a carbohydrase mixture, ultrasound, and irradiation treatments on the physical properties of defatted mustard meal-based edible films. Korean J. Food Sci. Technol. 43: 30-38 (2011) https://doi.org/10.9721/KJFST.2011.43.1.030
  26. Sablani SS, Dasse F, Bastarrachea L, Dhawan S, Hendrix KM, Min SC. Apple peel-based edible film development using a highpressure homogenization. J. Food Sci. 74: 372-381 (2009)
  27. Aulin C, Gallstedt M, Lindstrom T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17: 559-574 (2010) https://doi.org/10.1007/s10570-009-9393-y
  28. McHugh TH, Krochta JM. Sorbitol- vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. J. Agr. Food Chem. 42: 841-845 (1994) https://doi.org/10.1021/jf00040a001
  29. McHugh TH, Krochta JM. Water vapor permeability properties of edible whey protein-lipid emulsion films. J. Am. Oil Chem. Soc. 71: 307-312 (1994) https://doi.org/10.1007/BF02638058
  30. Park SK, Bae DH. Antimicrobial properties of wheat gluten-chitosan composite film in intermediate-moisture food systems. Food Sci. Biotechnol. 15: 133-137 (2006)
  31. Rhim JW. Characteristics of pullulan-based edible films. Food Sci. Biotechnol. 12: 161-165 (2003)
  32. Ryu SY, Rhim JW, Lee WJ, Yoon JR, Kim SS. Relationship between moisture barrier properties and sorption characteristics of edible composite films. Food Sci. Biotechnol. 14: 68-72 (2005)
  33. Ku KJ, Hong YH, Song KB. Preparation of a silk fibroin film containing catechin and its application. Food Sci. Biotechnol. 17: 1203-1206 (2008)
  34. Lee HB, Yang HJ, Ahn JB, Lee YS, Min SC. Zizyphus jujubebased edible film development by the Depolymerization processes. Korean J. Food Sci. Technol. 43: 321-328 (2011) https://doi.org/10.9721/KJFST.2011.43.3.321

Cited by

  1. Preservation of Strawberry Juice by Dynamic High-Pressure Processing vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.480
  2. Plasticization and moisture sensitivity of potato peel-based biopolymer films vol.24, pp.5, 2015, https://doi.org/10.1007/s10068-015-0221-x