DOI QR코드

DOI QR Code

Manufacture of the Red Ginseng Vinegar Fermented with Red Ginseng Concentrate and Rice Wine, and its Quality Evaluation

홍삼 농축액과 쌀막걸리의 동시 발효를 통한 홍삼 식초의 제조 및 품질평가

  • Kim, Dong-Kuk (Department of Food Science and Technology, Institute of Life Science & Resource, Kyung Hee University) ;
  • Baik, Moo-Yeul (Department of Food Science and Technology, Institute of Life Science & Resource, Kyung Hee University) ;
  • Kim, Hae-Kyung (Department of Food Science and Biotechnology Engineering, Han Seo University) ;
  • Hahm, Young-Tae (Department of Biotechnology, Chung Ang University) ;
  • Kim, Byung-Yong (Department of Food Science and Technology, Institute of Life Science & Resource, Kyung Hee University)
  • 김동국 (경희대학교 식품공학과 및 생명자원과학연구소) ;
  • 백무열 (경희대학교 식품공학과 및 생명자원과학연구소) ;
  • 김혜경 (한서대학교 식품 생물공학과) ;
  • 함영태 (중앙대학교 생명공학과) ;
  • 김병용 (경희대학교 식품공학과 및 생명자원과학연구소)
  • Received : 2011.12.06
  • Accepted : 2012.02.13
  • Published : 2012.04.30

Abstract

The objectives of this study were to manufacture the red ginseng vinegar based on rice wine and red ginseng concentrate (RGC) using $Acetobacter$ $aceti$ and to evaluate its quality with remaining crude saponin contents and sensory score. The maximum prosapogenin (ginsenoside-Rh1, Rh2, Rg2, and Rg3) content in RGC regarding ginseng was obtained from such processes as steaming, drying, and extraction. When RGC was added into a rice wine in the range of 0-1% before acetic fermentation, pH decreased slowly during 20 days depending on RGC contents, but total acidity was not dependent on RGC contents. Compared to the crude saponin content (71.75 mg/g) of ginseng vinegar added RGC after acetic fermentation, the fermentation with RGC produced a lower crude saponin content (16.95 mg/g) in red ginseng vinegar. Sensory scores such as odor, taste, and overall preference, however, vinegar fermented with RGC were higher than those of vinegar added RGC after acetic fermentation.

홍삼 특유의 prosapogenin 성분을 극대화 시키기 위해 홍삼의 증숙, 건조 및 추출 공정을 최적화하여 식초에 첨가할 홍삼 농축액을 제조하였다. 농축액을 0-1%의 범위로 첨가한 홍삼 발효 쌀 식초의 경우 정치 배양 20일차에 초산발효가 종료 되었으며 홍삼 농축액의 함유량이 높을수록 pH 감소속도가 늦고 감소량 또한 control에 비해 적음을 확인 할 수 있었다. 산도의 경우 농축액 농도 별 초산 생성 속도에는 차이는 있으나 농축액 함유량이 산도 변화 량에 큰 영향을 미치지 않았다. 1%의 홍삼 농축액을 후 첨가한 식초의 경우 71.75 mg/g의 조사포닌 함량을 가진 반면에 0-1% 범위의 농축액을 주모에 첨가하여 초산 발효를 동시에 진행한 경우 발효 진행 중 상당한 조사포닌 손실이 있음을 확인하였다. 이 두 식초를 가지고 관능검사를 진행한 결과 향기, 맛 및 전체적인 평가에서 농축액과 초산발효를 동시에 진행시킨 홍삼발효식초가 더 좋은 선호도를 나타내었다.

Keywords

References

  1. Ebihara K, Nakajima A. Effect of acetic acid and vinegar on blood glucose and insulin responses to orally administered sucrose and starch. Agr. Biol. Chem. Tokyo 52: 1311-1312 (1988) https://doi.org/10.1271/bbb1961.52.1311
  2. Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese japanese subjects. Biosci. Biotech. Bioch. 73: 1837-1843 (2009) https://doi.org/10.1271/bbb.90231
  3. Park YK, Jung ST, Kang SG, Park IB, Cheun KS, Kang SK. Production of a vinegar from onion. Korean J. Appl. Microbiol. Biotechnol. 27: 75-79 (1999)
  4. Kim YT, Seo KI, Jung YJ, Lee YS, Shim KH. The production of vinegar using citron (Citrus junos Seib.) juice. J. East. Asian Soc. Dietary Life 7: 301-307 (1997)
  5. Cho JW, Kim IS, Kim MK, Lee YK, Kim SD. Characteristics of peach vinegar by parallel complex fermentation. Korean J. Postharvest Sci. Technol. 7: 89-93 (2000)
  6. Kim DH. Studies on the production of vinegar from fig. J. Korean Soc. Food Sci. Nutr. 28: 53-60 (1999)
  7. Ko YJ, Jeong DY, Lee JO, Park MH, Kim EJ, Kim JW, Kim YS, Ryu CH. The establishment of optimum fermentation conditions for prunus mume vinegar and its quality evaluation. J. Korean Soc. Food Sci. Nutr. 36: 361-365 (2007) https://doi.org/10.3746/jkfn.2007.36.3.361
  8. Hasegawa H, Sung JH, Matsumiya S, Uchiyama M, Inouye Y, Kasai R, Yamasaki K. Reversal of daunomycin and vinblastine resistance in multidrug-resistant P388 leukemia in vitro through enhanced cytotoxicity by triterpenoids. Planta Med. 61: 409-409 (1995) https://doi.org/10.1055/s-2006-958126
  9. Kaku T, Kawashima Y. Isolation and characterization of ginsenoside- Rg2, 20R-prosaposgenin, 20S-prosapogenin, and delta 20-prosapogenin. Chemical studies on saponins of Panax ginseng C.A. Meyer, 3rd report. Arzneimittel-Forsch. 30: 936-943 (1980)
  10. Park JD, Kim DS. Effect of ginseng saponin on modulation of multidrug resistance. Arch. Pharm. Res. 19: 213-218 (1996) https://doi.org/10.1007/BF02976892
  11. Ann YG, Kim SK, Shin CS. Studies on wax gourd - ginseng vinegar. Korean J. Food Nutr. 14: 52-58 (2001)
  12. Ko SK, Lee KH, Hong JK, Kang SA, Sohn UD, Im BO, Han ST, Yang BW, Chung SH, Lee BY. Change of ginsenoside composition in ginseng extract by vinegar process. Food Sci. Biotechnol. 14: 509-513 (2005)
  13. Ng TB, Wang H. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci. 68: 739-749 (2001) https://doi.org/10.1016/S0024-3205(00)00970-X
  14. Shibata S, Ando T, Tanaka O. Chemical studies on the oriental plant drugs. XVII. The prosapogenin of the ginseng saponins (ginsenosides-Rb1, -Rb2, and -Rc). Chem. Pharm. Bull. 14: 1157- 1161 (1966) https://doi.org/10.1248/cpb.14.1157
  15. Samukawa K, Yamashita H, Matsuda H, Kubo M. Simultaneous analysis of ginsenosides of various ginseng radix by HPLC. J. Pharm. Soc. Jpn. 115: 241-249 (1995) https://doi.org/10.1248/yakushi1947.115.3_241
  16. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704 (2000) https://doi.org/10.1021/np990152b
  17. Shin JS, Jeong YJ. Changes in the components of acetic acid fermentation of brown rice using raw starch digesting enzyme. J. Korean Soc. Food Sci. Nutr. 32: 381-387 (2003) https://doi.org/10.3746/jkfn.2003.32.3.381
  18. Kim YD, Kang SH, Kang SG. Studies on the acetic acid fermentation using maesil juice. J Korean Soc. Food Sci. Nutr. 25: 695- 700 (1996)
  19. de Ory I, Romero LE, Cantero D. Optimum starting-up protocol of a pilot plant scale acetifier for vinegar production. J. Food Eng. 52: 31-37 (2002) https://doi.org/10.1016/S0260-8774(01)00082-6
  20. Kim DH, Lee JS. Vinegar production from subtropical fruits. J. Korean Soc. Food Nutr. 29: 68-75 (2000)
  21. Jeong ST, Kim JG, Chang HS, Kim YB, Choi JW. Optimum condition of acetic acid fermentation for persimmon vinegar preparation and quality evaluation of persimmon vinegar. Korean J. Post- Harvest Sci. Technol. 3: 171-178 (1996)
  22. Kim KE, Choi OS, Lee YJ, Kim HS, Bae TJ. Processing of vinegar using the sea tangle (Laminaria japonica) extract. J. Life Sci. 11: 211-217 (2001)
  23. Yang JW, Do JH, Sung HS, Hong SG. Studies on the manufacturing of ginseng soft drink Part II. Effect of pH and heat treatment on the stability of panaxadiol saponins. J. Ginseng Res. 6: 25-29 (1982)
  24. Choi KH, Kwak YS, Rhee MH, Hwang MS, Kim SC, Park CK, Han GH, Song KB. Effects of pH and high temperature treatment on the changes of major ginsenosides composition in Korean red ginseng water extract. J. Ginseng Res. 32: 127-134 (2008) https://doi.org/10.5142/JGR.2008.32.2.127
  25. Attele AS, Wu JA, Yuan CS.Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685- 1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  26. Fluckiger J, Ettlinger L. Glucose metabolism in Acetobacter aceti. Arch. Microbiol. 114: 183-187 (1977) https://doi.org/10.1007/BF00410782

Cited by

  1. Protective effects of red ginseng according to steaming time on HCl/ethanol-induced acute gastritis vol.59, pp.4, 2016, https://doi.org/10.3839/jabc.2016.062
  2. Fermentation Characteristics of Shindari Added with Carrot vol.31, pp.1, 2015, https://doi.org/10.9724/kfcs.2015.31.1.009
  3. Antioxidant Activities of Beverage Concentrates and Purees vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.997
  4. Comparison of the fermented property and isolation of acetic-acid bacteria from traditional Korean vinegar vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.903