DOI QR코드

DOI QR Code

Performance Improvement of Queen-bee Genetic Algorithms through Multiple Queen-bee Evolution

다중 여왕벌 진화를 통한 여왕벌 유전자알고리즘의 성능향상

  • Jung, Sung-Hoon (Department of Information and Communications Engineering, Hansung University)
  • 정성훈 (한성대학교 정보통신공학과)
  • Received : 2012.01.26
  • Accepted : 2012.03.12
  • Published : 2012.04.30

Abstract

The queen-bee genetic algorithm that we made by mimicking of the reproduction of queen-bee has considerably improved the performances of genetic algorithm. However, since we used only one queen-bee in the queen-bee genetic algorithm, a problem that individuals of genetic algorithm were driven to one place where the queen-bee existed occurred. This made the performances of the queen-bee genetic algorithm degrade. In order to solve this problem, we introduce a multiple queen-bee evolution method by employing another queen-bee whose fitness is the most significantly increased than its parents as well as the original queen-bee that is the best individual in a generation. This multiple queen-bee evolution makes the probability of falling into local optimum areas decrease and allows the individuals to easily get out of the local optimum areas even if the individuals fall into a local optimum area. This results in increasing the performances of the genetic algorithm. Experimental results with four function optimization problems showed that the performances of the proposed method were better than those of the existing method in the most cases.

여왕벌의 생식방식을 모방하여 만든 여왕벌 유전자알고리즘은 유전자알고리즘의 성능을 대폭 향상시켰다. 그러나 여왕벌 유전자알고리즘에서는 여왕벌을 하나만사용하여 진화를 수행함으로서 개체들이 지나치게 해당 여왕벌이 있는 쪽으로 몰리는 문제를 발생하였으며 이는 결국 유전자 알고리즘의 성능저하를 가져왔다. 본 논문에서는 이러한 문제를 해결하고자 각 세대에서 가장 적합도가 좋은 여왕벌과 더불어 개체의 적합도가 부모 개체에 비하여 가장 크게 증가한 두 번째 여왕벌을 도입한 다중 여왕벌 진화 알고리즘을 제안한다. 다중 여왕벌을 도입함으로서 개체가 지역 최적해에 빠질 가능성이 줄어들고 지역 최적해에 빠진 경우에도 보다 쉽게 지역 최적해를 빠져나올 수 있게 되어 성능향상이 가능하였다. 4개의 함수최적화 문제에 적용시켜본 결과 본 논문에서 제안한 방법이 기존의 방법보다 대부분의 경우에서 성능이 향상됨을 볼 수 있었다.

Keywords

References

  1. D. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning," Addison-Wesley.
  2. C. Xudong, Q. Jingen, N. Guangzheng, Y. Shiyou, and Z. Mingliu, "An Improved Genetic Algorithm for Global Optimization of Electromagnetic Problems," IEEE Trans. on Magnetics, vol. 37, pp. 3579-3583, Sep. 2001. https://doi.org/10.1109/20.952666
  3. Zhihua Tang, Youtuan Zhu, Guo Wei, and Jinkang Zhu, "An Elitist Selection Adaptive Genetic Algorithm for Resource Allocation in Multiuser Packet-based OFDM Systems," Journal of Communications, vol. 3, no. 3, pp. 27-32, Jul 2008.
  4. R. Poli, J. Kennedy, and T.-Blackwell, "Particle swarm optimization: An overview," Swarm Intelligence, vol. 1, pp. 33-57, Aug. 2007. https://doi.org/10.1007/s11721-007-0002-0
  5. M. Dorigo and T. Stutzle, Ant Colony Optimization The MIT Press, 2004.
  6. S. H. Jung, "Queen-bee Evolution for Genetic Algorithms," Electronics Letters, vol. 39, no. 6, pp. 575-576, Mar 2003. https://doi.org/10.1049/el:20030383
  7. Zhang Jinhua, Zhuang Jian, Du Haifeng, and Wang Sun'an, "Self-organizing genetic algorithm based tuning of PID controllers," Information Sciences, vol. 179, pp. 1007-1018, 2009. https://doi.org/10.1016/j.ins.2008.11.038
  8. J. Andre, P. Siarry, and T. Dognon, "An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization," Advances in engineering software, Vol. 32, No. 1, pp. 49-60, 2001. https://doi.org/10.1016/S0965-9978(00)00070-3