Abstract
Modern society, various great strength crimes are producing. After all crimes happen, it is most important that prevent crime beforehand than that cope. So, many research studied to prevent various crime. However, existing method of studies are to analyze and prevent by society and psychological factors. Therefore we wishes to achieve research to forecast crime by time using Markov chain method. We embody modelling for crime occurrence estimate by crime type time using crime occurrence number of item data that is collected about 5 great strength offender strength, murder, rape, moderation, violence. And examined propriety of crime occurrence estimate modelling by time that propose in treatise that compare crime occurrence type crime occurrence estimate price and actuality occurrence value. Our proposed crime occurrence estimate techniques studied to apply maximum value by critcal value about great strength crime such as strength, murder, rape etc. actually, and heighten crime occurrence estimate probability by using way to apply mean value about remainder crime in this paper. So, we wish to more study about wide crime case and as the crime occurrence estimate rate and actuality value by time are different in crime type hereafter applied examples investigating.
현대 사회는 다양한 강력 범죄들이 발생하고 있다. 모든 범죄들은 발생한 후에 대처를 하는 것보다 사전에 범죄를 예방하는 것이 가장 중요하다. 이를 위해서 다양한 범죄를 예방하기 위한 연구가 진행되었다. 하지만 기존 연구 방법들은 사회학적, 심리학적인 요인들을 분석하여 범죄의 발생 확률과 발생 동기 등을 분석하여 예방하고자 하는 노력이 대부분이다. 그러므로 본 논문에서는 마코프 체인 방식을 사용하여 시간에 따른 범죄를 예측하기 위한 연구를 수행하고자 한다. 5대 강력 범죄인 강도, 살인, 강간, 절도, 폭력에 대하여 수집된 범죄 발생 건수 자료를 사용해 범죄 유형별 시간에 따른 범죄 발생 예측을 위한 모델링을 구현한다. 그리고 범죄 발생 유형별 범죄 발생 예측 값과 실제 발생 값을 비교해 본 논문에서 제안한 시간에 따른 범죄 발생 예측 모델링의 타당성을 검토하였다. 본 논문에서 제안한 범죄 발생 예측 기법이 실제로 강도, 살인, 강간 등과 같은 강력 범죄에 대해서는 최대 값을 임계값으로 적용하고, 나머지 범죄에 대해서는 평균값을 적용하는 방식을 사용함으로써 범죄 발생 예측확률을 높일 수 있을 것으로 연구되었다. 향후 범죄 유형별로 시간에 따른 범죄발생 예측율과 실제 값이 다르게 적용되는 사례들을 추가 조사하여 연구의 폭을 넓히고자 한다.