DOI QR코드

DOI QR Code

A study of improved ways of the predicted probability to criminal types

범죄유형별 범죄발생 예측확률을 높일 수 있는 방법에 관한 연구

  • Chung, Young-Suk (Dept. of Computer Science & Engineering, Kongju national University) ;
  • Kim, Jin-Mook (Dept. of IT Education, Sun moon University) ;
  • Park, Koo-Rack (Dept. of Computer Science & Engineering, Kongju national University)
  • 정영석 (공주대학교 컴퓨터공학과) ;
  • 김진묵 (선문대학교 IT 교육학부) ;
  • 박구락 (공주대학교 컴퓨터공학과)
  • Received : 2011.12.16
  • Accepted : 2012.02.26
  • Published : 2012.04.30

Abstract

Modern society, various great strength crimes are producing. After all crimes happen, it is most important that prevent crime beforehand than that cope. So, many research studied to prevent various crime. However, existing method of studies are to analyze and prevent by society and psychological factors. Therefore we wishes to achieve research to forecast crime by time using Markov chain method. We embody modelling for crime occurrence estimate by crime type time using crime occurrence number of item data that is collected about 5 great strength offender strength, murder, rape, moderation, violence. And examined propriety of crime occurrence estimate modelling by time that propose in treatise that compare crime occurrence type crime occurrence estimate price and actuality occurrence value. Our proposed crime occurrence estimate techniques studied to apply maximum value by critcal value about great strength crime such as strength, murder, rape etc. actually, and heighten crime occurrence estimate probability by using way to apply mean value about remainder crime in this paper. So, we wish to more study about wide crime case and as the crime occurrence estimate rate and actuality value by time are different in crime type hereafter applied examples investigating.

현대 사회는 다양한 강력 범죄들이 발생하고 있다. 모든 범죄들은 발생한 후에 대처를 하는 것보다 사전에 범죄를 예방하는 것이 가장 중요하다. 이를 위해서 다양한 범죄를 예방하기 위한 연구가 진행되었다. 하지만 기존 연구 방법들은 사회학적, 심리학적인 요인들을 분석하여 범죄의 발생 확률과 발생 동기 등을 분석하여 예방하고자 하는 노력이 대부분이다. 그러므로 본 논문에서는 마코프 체인 방식을 사용하여 시간에 따른 범죄를 예측하기 위한 연구를 수행하고자 한다. 5대 강력 범죄인 강도, 살인, 강간, 절도, 폭력에 대하여 수집된 범죄 발생 건수 자료를 사용해 범죄 유형별 시간에 따른 범죄 발생 예측을 위한 모델링을 구현한다. 그리고 범죄 발생 유형별 범죄 발생 예측 값과 실제 발생 값을 비교해 본 논문에서 제안한 시간에 따른 범죄 발생 예측 모델링의 타당성을 검토하였다. 본 논문에서 제안한 범죄 발생 예측 기법이 실제로 강도, 살인, 강간 등과 같은 강력 범죄에 대해서는 최대 값을 임계값으로 적용하고, 나머지 범죄에 대해서는 평균값을 적용하는 방식을 사용함으로써 범죄 발생 예측확률을 높일 수 있을 것으로 연구되었다. 향후 범죄 유형별로 시간에 따른 범죄발생 예측율과 실제 값이 다르게 적용되는 사례들을 추가 조사하여 연구의 폭을 넓히고자 한다.

Keywords

References

  1. Brown, M.A., "Modelling the Spatial Distribution of Suburban Crime," Economy Geography, Vol. 58, No3, pp. 247-261, July 1982. https://doi.org/10.2307/143513
  2. Kamber, T., Mollenkopt, H., and Ross, A. "Crime, Space, and Place : An Analysis of Crime Patterns in Brooklyn", inn Goldsmith V., Mguire G., Mollenkopf, H. and Ross, A.(eds.), Analyzing Crime Patterns: Frontiers of Practice Sage, pp121-136, 2000.
  3. Lee Sang-Hyun, "Evaluation of Crime Prevention Performance of Urban Spatial Structure through Network Analysis", Journal of the architecture institute of Korea planning & design, Vol27, No 8, pp. 243-250, 8, 2011.
  4. Dong-Suk Hong, Joung-Joon Kim , Hong-Koo Kang , Ki-Young Lee, Jong-Soo Seo, Ki-Joon Han, "Base Location Prediction Algorithm of Serial Crimes based on the Spatio-Temporal Analysis", Journal of Korea spatial information society, Vol10, No 2, pp. 63-79, 6. 2008.
  5. Park Cheol-Hyun, "Specialization in Criminal Career : Markov-Chain Analysis", Korean Criminological Review, pp. 243-273, 3, 2003.
  6. Charles M. Grinstead, "Introduction to Probability: Second Revised Edition", American Mathematical Society, pp405-406, 1997.
  7. Won-Hyung Park, Young-Jin Kim, Dong-Hwi Lee, Kui-Nam J Kim, "A Study on Prediction of Mass SQL Injection Worm Propagation Using The Markov Chain", Journal of the Korea Institute of Information Security and Cryptology, Vol 8, No4, pp.174-181, 12. 2008.
  8. Young-Gab Kim, Young-kyo Baek, Hoh Peter In, Doo-Kwon Baik, "A Probabilistic Model of Damage Propagation based on the Markov Process", Journal of KIISE, Vol33, No8, pp.524-535, 8. 2006.
  9. Seung-Hun Lee, Byeong-Sup Moon, Bum-Jin Park, "The Bus Delay Time Prediction Using Markov Chain", The Journal of The Korea Institute of Intelligent Transport Systems, pp.1-10, 6. 2009.
  10. Kim Young-Jin, Park Cheol-Soo, "Prediction of Occupant"s Presence in Residential Apartment Buildings using Markov Chain" Korea Institute of Architectural Sustainable Environment and building System. 2008 autumn conference, pp116-121, 2008.
  11. Hee Tae-Lee, Jae-Chul Kim, "A Study on The Prediction of Number of Failures using Markov Chain and Fault Data", KIIEE Annual Autumn Conference 2008, pp. 363-366, 10.2008