DOI QR코드

DOI QR Code

Permeation Property of Ionomer Film with New Multifunctional Ionic Site

다관능기를 도입한 아이오노머 필름의 기체투과 특성

  • Lee, Bo-Mi (School of Materials Science & Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Jeong, Sam-Bong (School of Materials Science & Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Nam, Sang-Yong (School of Materials Science & Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 이보미 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단) ;
  • 정삼봉 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단) ;
  • 남상용 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단)
  • Received : 2011.01.31
  • Accepted : 2012.05.07
  • Published : 2012.05.27

Abstract

Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

Keywords

References

  1. M. R. Tant, K. A. Mauritz and G. L. Wilkes, Ionomers: Synthesis, Structure, Properties and Applications, p. 3-31, Blackie Academic and Professional, New York (1997).
  2. G. Holden, H. R. Kricheldorf, R. P. Quirk, Thermoplastic Elastomers, 2nd ed., p. 101, Hanser Gardner Publications, USA (1996).
  3. S. Schlick, Ionomers: Characterization, Theory, and Applications, p., CRC Press Boca Raton, USA (1996).
  4. S. H. Kim and J. S. Kim, Macromolecules, 36(7), 2382 (2003). https://doi.org/10.1021/ma021744v
  5. B. P. Kirkmeyer, A. Taubert, J. S. Kim and K. I. Winey, Macromolecules, 35(7), 2648 (2002). https://doi.org/10.1021/ma011482h
  6. J. Coates, Interpretation of Infrared Specta, A Practical Approach, ed. R. A. Meyers, p. 10837, John Wiley & Sons, USA (2000).
  7. L. P. DeFlores, Z. Ganim, R. A. Nicodemus and A. Tokmakoff, J. Am. Chem. Soc., 131(9), 3385 (2009). https://doi.org/10.1021/ja8094922
  8. K. V. Farrell and B. P. Grady, Macromolecules, 34(20), 7108 (2001). https://doi.org/10.1021/ma002081p
  9. H. Tachino, H. Hara, E. Hirasawa, S. Kutsumizu and S. Yano, Macromolecules, 27(2), 372 (1994). https://doi.org/10.1021/ma00080a009
  10. D. J. Yarusso and S. L. Cooper, Macromolecules, 16(12), 1871 (1983). https://doi.org/10.1021/ma00246a013
  11. T. Ishioka and M. Kobayashi, Macromolecules, 23(12), 3183 (1990). https://doi.org/10.1021/ma00214a025
  12. A. Eisenberg and M. Navratil, Macromolecules, 6(4), 604 (1973). https://doi.org/10.1021/ma60034a027
  13. J. S. Kim, R. J. Jackman and A. Eisenberg, Macromolecules, 27(10), 2789 (1994). https://doi.org/10.1021/ma00088a021
  14. A. Eisenberg, Marcromolecules, 3(2), 147(1970). https://doi.org/10.1021/ma60014a006
  15. G. Huber and T. A. Vilgis, Macromolecules, 35(24), 9204 (2002). https://doi.org/10.1021/ma0208887
  16. J. M. Song, M. Luqman, J. S. Kim and K. Shin, J. Polymer Sci. B Polymer Phys., 45(9), 1045 (2007). https://doi.org/10.1002/polb.21182
  17. R. A. Hayes, High Modulus Ionomer for Packaging, US Patent 2009/0123613 A1, December 23 (2008).
  18. The Membrane Society of Korea, Membrane Separation (Basic), p. 292-302, Freedom Academy, Seoul, Korea (1996) (in Korean).
  19. N. N. Li, A. G. Fane, W. S. W. Ho and T. Matsuura, Advanced Membrane Technology and Applications, p. 39-54, John Wiley & Sons, New Jersey (2008).
  20. S. L. Huang, R. C. Ruaan and J. Y. Lai, J. Membr. Sci., 123(1), 71 (1997). https://doi.org/10.1016/S0376-7388(96)00202-5
  21. K. H. Hsieh, C. C. Tsai and S. M. Tseng, J. Membr. Sci., 49(3), 341 (1990). https://doi.org/10.1016/S0376-7388(00)80647-X
  22. G. Galland and T. M. Lam, J. Appl. Polymer Sci., 50(6), 1041 (1993). https://doi.org/10.1002/app.1993.070500613
  23. W. L. Vaughn, Metal ionomer membranes for gas separation, US Patent 4,789,386, September 18 (1986).
  24. S. Kutsumizu, Y. Watanabe, S. Yano, H. Tachino, H. Hara and Y. Kutsuwa, J. Mater. Sci., 32(1), 99 (1997). https://doi.org/10.1023/A:1018523131700
  25. H. G. Hammon, K. Ernst and J. C. Newton, J. Appl. Polymer Sci., 21(7), 1989 (1977). https://doi.org/10.1002/app.1977.070210725
  26. N. Maki, Y. Tajitsu and H. Sasaki, Packag. Tech. Sci., 20(5), 309 (2007). https://doi.org/10.1002/pts.759