Seasonal Investigation of Natural Organic Matters from Yeongsan River Basin by Fluorescence Spectroscopy

영산강 수계 자연유기물질의 계절별 형광특성 연구

  • Lee, Dong-Jin (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Chon, Kang-Min (Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Jung, Soo-Jung (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Kim, Sang-Don (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Lee, Kyung-Hee (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Hwang, Tae-Hee (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Hwang, Dong-Jin (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Lim, Byung-Jin (Yeongsan River Environment Research Center National Institute of Environmental Research) ;
  • Cho, Jae-Weon (Environmental Engineering, Gwangju Institute of Science and Technology)
  • Received : 2011.12.14
  • Accepted : 2012.03.07
  • Published : 2012.03.31

Abstract

This study investigated the characteristics of natural organic matter (NOM) with general water characteristics (pH, DO, electrical conductivity, BOD, COD, TN, TP, Chl-$a$, DOC, $UV_{254}$, SUVA) and the 3D fluorescence excitation-emission matrix (FEEM) in the Yeongsan River basin. FEEM was used to classify protein-like and fulvic & humiclike substances with fluorescence intensity in the matrix of excitation and emission wavelength. The concentration of BOD, COD, TN, electrical conductivity and DOC in the region of Gwangju city (Gwangju sewage treatment plant: GJS, Gwangjucheon: GJC, Gwangju 2: GJ2) was relatively higher than the upper reaches and lower reaches of the Yeongsan River basin. SUVA in most sites was lower than 3 L $mg^{-1}\;m^{-1}$ as the hydrophilic substances, except Damyang (DY) in the upper reaches of Yeongsan river was higher than 3 L $mg^{-1}\;m^{-1}$ as the hydrophobic substances during winter and autumn. In the FEEM investigation the fulvic and humic substances were found in most sites, and in sites regarding Gwangju city (GJS, GJC, GJ2) during winter and GJC in summer, protein-like substances were found. The trend of fluorescence intensities from the upper reaches to the lower reaches in most sites corresponded to that regarding the concentration of water characteristics (BOD, COD, TN, DOC). That is why the region of Gwangju city (GJS, GJC, GJ2) was relatively higher. This results were an equivalent trend to those of fluorescence index (FI) in most sites, and the higher FIs in the sites of Gwangju city indicate more microbial-derived substances due to enormous effluent organic matters (EfOM) from huge Gwangju sewage treatment plants.

본 연구는 영산강 수계의 일반적인 수질 특성(pH, DO, 전기전도도, BOD, COD, TN, TP, Chl-$a$, DOC, $UV_{254}$, SUVA)과 3D fluorescence excitation-emission matrix (FEEM) 분석을 통한 자연유기물질(NOM)의 특성을 조사하였다. FEEM은 여기 파장과 방출 파장에서의 형광세기를 이용하여 단백질계 (protein-like), 펄빅계 (fulvic-like) 및 휴믹계(humic-like) 물질을 분류하는데 사용된다. 일반수질 항목(BOD, COD, TN, 전기전도도 및 DOC)는 영산강 수계의 중류에 위치한 광주하수처리장(GJS), 광주천(GJC), 광주2 (GJ2) 등 광주광역시 지역에서 상류 및 하류 지역보다 상대적으로 높게 나타났다. 대부분의 지점에서 SUVA값은 3 L $mg^{-1}\;m^{-1}$보다 낮게 나타나 친수성 경향을 보이나, 영산강 상류지역인 담양(DY)에서는 겨울과 가을에 3 L $mg^{-1}\;m^{-1}$ 이상으로 소수성 경향을 보이고 있다. FEEM 조사결과, 대부분의 지점은 펄빅계와 휴믹계 물질이 검출되었으며, 다만 겨울에 광주지역(GJS, GJC, GJ2), 여름에 GJC 지점에서는 단백질계 물질이 검출되었다. 영산강 상류부터 하류지역까지 대부분의 지점에서 형광세기는 일반 수질항목(BOD, COD, TN, DOC) 농도와 유사한 경향을 보이고 있으며, 광주시 지역(GJS, GJC, GJ2)에서 상대적으로 높게 나타났다. 이 결과는 대부분의 지점에서 형광지표(Flourescence index, FI)의 경향과도 일치하며, 광주시에서 FI가 높게 나타난 것은 규모가 큰 광주시 하수처리장에서 방류되는 자연유기물질(EfOM)로 인한 미생물 기원 물질이 많기 때문으로 보여진다.

Keywords

References

  1. Aiken, G.R. 1984. Evaluation of ultrafiltration for determining molecular weight of fulvic acid. Environmental Science and Technology 18(12): 987-981. https://doi.org/10.1021/es00130a607
  2. Aiken, G.R., D.M. McKnight, R.L. Wershaw and P. Mac-Carthy. 1985. Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization. J. Wiley & Sons, New York.
  3. Aiken, G.R. and J.A. Leenheer. 1993. Isolation and chemical characterization of dissolved and colloidal organic matter. Chemical Ecology 8: 135-151. https://doi.org/10.1080/02757549308035305
  4. Averett, R.C., J.A. Leenheer, D.M. McKnight and K.A. Thorn. 1994. Humic substances in the Suwannee River, Georgia interactions, properties, and proposed structures: US Geological Survey Water-Supply Paper 2: 273.
  5. Baker, A. 2001. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science and Technology 35(5): 948-953. https://doi.org/10.1021/es000177t
  6. Choi, H., J. Lee and S. Kim. 2009. 2009 Report on Result of Flow Measurement in the Yeongsan & Seomjin River. Yeongsan River Environmental Research Center.
  7. Christian, J.V., K.A. Catherine and K.A. Louis. 1997. Chemical composition of the biodegradable dissolved organic matter in streamwater. Limnology and Oceanography 42(1): 38-44.
  8. Coble, P.G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectrometry. Marine Chemistry 51: 325-346. https://doi.org/10.1016/0304-4203(95)00062-3
  9. Henderson, R.K., A. Baker, K.R. Murphy, A. Hambly, R.M. Stuetz and S.J. Khan. 2009. Fluorescence as a potential monitoring tool for recycled water system: A review. Water Research 43: 863-881. https://doi.org/10.1016/j.watres.2008.11.027
  10. Hudson, N., A. Baker and D. Reynolds. 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - a review. River Research and Applications 23(6): 631-649. https://doi.org/10.1002/rra.1005
  11. Hur, J., M.A. Williams and M.A. Schlautman. 2006. Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere 63: 387-402. https://doi.org/10.1016/j.chemosphere.2005.08.069
  12. Hur, J., S. Hwang and J. Shin. 2008. Using synchronous fluorescence techniques as a water quality monitoring tool for an urban river. Water, Air and Soil Pollution 191: 231-243. https://doi.org/10.1007/s11270-008-9620-4
  13. Hur, J. and G. Kim. 2009. Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors. Chemosphere 75: 483-490. https://doi.org/10.1016/j.chemosphere.2008.12.056
  14. Imai, A., F. Takehiko, M. Kazuo, Y. Kim and K. Choi. 2002. Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research 36(4): 859-870 https://doi.org/10.1016/S0043-1354(01)00283-4
  15. Janhom, T., S. Wattanachira and P. Pavasant. 2009. Characterization of brewery wastewater with spectrofluorometry analysis. Journal of Environmental Management 90: 1184-1190. https://doi.org/10.1016/j.jenvman.2008.05.008
  16. Kim, H., M. Yu and I. Han. 2006. Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River. Korea Applied Geochemistry 21: 1226-1239. https://doi.org/10.1016/j.apgeochem.2006.03.011
  17. Lee, D., K. Chon, S. Kim, S. Jung, K. Lee, T. Hwang, B. Lim and J. Cho. 2011. A study on characteristics of natural organic matter using XAD and FTIR in Yeongsan Riversystem. Korean Journal of Limnology 44(4) (printing).
  18. Mcknight, D.M., E.W. Boyer, P.K. Westerhoff, P.T. Doran, T.K. Kulbe and D.T. Andersen. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46(1): 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
  19. Park, N., J. Kim and J. Cho. 2008. Organic matter, anion, and metal wastewater treatment in Damyang surfaceflow constructed wetlands in Korea. Ecological Engineering 32: 68-71. https://doi.org/10.1016/j.ecoleng.2007.09.003
  20. Paula, G.C. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51: 325-346. https://doi.org/10.1016/0304-4203(95)00062-3
  21. Reynolds, D.M. and S.R. Ahmad. 1997. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Research 31(8): 2012-2018. https://doi.org/10.1016/S0043-1354(97)00015-8
  22. Wu, F.C., D.N. Kothawala, R.D. Evans, P.J. Dillon and Y.R. Cai. 2007. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream. Applied Geochemistry 22: 1659-1667. https://doi.org/10.1016/j.apgeochem.2007.03.024