DOI QR코드

DOI QR Code

IPMSM Drives Using NPC 3-Level Inverters for the Next Generation High Speed Railway System

NPC 3-레벨 인버터를 적용한 차세대 고속전철 IPMSM의 구동

  • 권순환 (중앙대학교 공과대학 전자전기공학부) ;
  • 진강환 (중앙대학교 공과대학 전자전기공학부) ;
  • 김성제 (중앙대학교 공과대학 전자전기공학부) ;
  • 이태형 (한국철도기술연구원) ;
  • 김윤호 (중앙대학교 공과대학 전자전기공학부)
  • Received : 2011.11.01
  • Accepted : 2012.02.21
  • Published : 2012.04.30

Abstract

In this paper, speed control of IPMSM drives for the next generation domestic high speed railway system using NPC 3-level inverters is presented. The NPC multilevel inverter is suitable for the high-voltage and high-power motor drive system because it has advantages in that the voltage rating of the power semiconductor devices and output current harmonics are reduced. For the speed control of IPMSM using NPC 3-level inverters, maximum torque control is applied in the constant torque region, and filed weakening control is applied in the constant power region. Simulation programs based on MATLAB/Simulink are developed. Finally the designed system is verified and their characteristics are analyzed by the simulation results.

NPC 멀티레벨 인버터는 2-레벨 인버터 방식에 비해 전력용 반도체 소자의 정격 전압과 출력전류의 고조파를 감소시킬 수 있는 장점이 있어 고압 대용량 전동기 구동시스템에 적합하다. NPC 3-레벨 인버터를 이용한 IPMSM의 속도 제어에서 일정 토크 영역에서는 최대 토크 제어, 일정 출력 영역에서는 약계자 제어 방식을 적용하였다. 제안된 시스템은 MATLAB/Simulink를 이용한 시뮬레이터를 구현하여 모의 시험 결과 분석을 통해 그 타당성을 검증하였다.

Keywords

References

  1. M.N. Uddin, T.S. Radwan, G.H. George, M.A. Rahman, (2000) Performance of current controllers for VSI-fed IPMSM drive, IEEE Transactions on Industry Applications, Vol 36, pp. 1531-1538. https://doi.org/10.1109/28.887203
  2. L. Zhong, M.F. Rahman, W.Y. Hu, K. W. Lim (1997) Analysis of direct torque control in permanent magnet synchronous motor drives, IEEE Transactions on Power Electronics, Vol. 12, 19, pp. 528-536. https://doi.org/10.1109/63.575680
  3. S.M. Kim, Y.D. Yoon, S.K. Sul, K. Ide, K, Tomita (2010) Parameter Independent Maximum Torque per Ampere(MTPA) Control of IPM Machine Based on Signal Injection, Twenty- Fifth Annual IEEE APEC, pp. 103-108.
  4. B. Velaerts et al. (1988) A novel approach to the generation and optimaization of three-level PWM waveforms, IEEE Power Electronics Specialists Conference Record, pp. 1255- 1262.
  5. A. Nabae, I. Takahashi, H. Akagi (1981) A new neutral point clamped PWM inverter, IEEE Trans. Ind, Appl., IA-17, (5), pp. 518-523. https://doi.org/10.1109/TIA.1981.4503992
  6. A. Horie, S. Saito, S. Ito, T. Takasaki, H. Ozawa (1995) Development of a three-level converter-inverter system with IGBT's for AC electric cars, IEE Japan IAS Annu. Meet. Rec., pp. 75- 78.
  7. E. Akagawa, S. Kawamoto, S. Tamai, H. Okayama T. Uemura, (1995) Three-level PWM converter-inverter system for nextgeneration Shinkansen, IEE Japan IAS Annu. Meet. Rec., pp. 81-82.
  8. H. Miyazaki, H. Fukumoto, S. Sugiyama, M. Tachikawa N. Azusawa (1997) Neutral-point-clamped inverter with parallel driving of IGBTs for industrial applications, IEEE Industry Applications Society Conference Record, pp. 1293-1299.
  9. K.H. Jin, S.J. Kim, D.H. Yi, S.H. Kwon, Y.H. Kim (2010) Maximum torque operation of IPMSM drives for the Next generation high speed railway system, Journal of the Korean Society for Railway, 13(5), pp. 493-499.

Cited by

  1. Noise Harmonic Reduction of IPMSM Based Next Generation High Speed Railway System using RCF-PWM vol.15, pp.3, 2012, https://doi.org/10.7782/JKSR.2012.15.3.244
  2. Research on High-Efficiency Power Conversion Structure for Railroad Auxiliary Power Supply(APS) System vol.19, pp.3, 2016, https://doi.org/10.7782/JKSR.2016.19.3.297