DOI QR코드

DOI QR Code

Determination of S-Allyl-L-cystein, Diallyl Disulfide, and Total Amino Acids of Black Garlic after Spontaneous Short-term Fermentation

자가숙성발효 후 흑마늘의 S-Allyl-L-cystein, Diallyl Disulfide 및 Total Amino Acids 분석

  • Kim, Mun-Su (Dept. of Food Science and Technology, Chung-Ang University) ;
  • Kim, Min-Ju (Dept. of Food Science and Technology, Chung-Ang University) ;
  • Bang, Woo-Suk (Dept. of Food and Nutrition, Yeungnam University) ;
  • Kim, Keun-Sung (Dept. of Food Science and Technology, Chung-Ang University) ;
  • Park, Sung-Soo (Cheju Traditional Food Institute, Cheju Halla University)
  • 김문수 (중앙대학교 식품공학과) ;
  • 김민주 (중앙대학교 식품공학과) ;
  • 방우석 (영남대학교 식품영양학과) ;
  • 김근성 (중앙대학교 식품공학과) ;
  • 박성수 (제주한라대학교 제주향토식품연구소)
  • Received : 2012.04.25
  • Accepted : 2012.05.02
  • Published : 2012.05.31

Abstract

Garlic (Allium sativum L.) is one of the oldest cultivated plants and has been used throughout the world as a food supplement and a folk medicine for thousands of years. Raw garlic has been processed into a variety of commercial garlic products for consumer convenience. The latest new processing technology, 'spontaneous short-term fermentation', has been developed to process raw garlic into black garlic. The physiologically active effects of garlic have been attributed to its organosulfur compounds. In this study, the proximate compositions and the total amino acid content of raw Namhae garlic and black garlic were determined. The two major organosulfur compounds of garlic, $S$-allyl-L-cysteine (SAC), and diallyl-disulfide (DADS), were also analyzed using RP-HPLC. The proximate compositions were not different between raw and black garlic. The amount of 13 amino acids was greater in black garlic than in raw garlic among a total of 17 amino acids considered. The black garlic had 2-fold higher levels of SAC and 30-fold higher levels of DADS than the raw garlic. Therefore, it is suggested that consuming black garlic produced by spontaneous short-term fermentation is more effective than consuming raw garlic, in order for consumers to take more physiologically active organosulfur compounds (SAC and DADS), which are the compounds that are good for consumer health.

남해산 생마늘 및 흑마늘의 일반성분 분석, 아미노산 함량 및 마늘의 주요 황 함유 생리활성물질인 수용성 $S$-allyl-L-cysteine(SAC) 및 지용성 diallyl-disulfide(DADS)의 함량을 분석하여 발효 전후 이들 성분에 대한 함량 변화를 비교하였다. 일반성분의 함량은 생마늘과 자가숙성발효마늘에서 큰 변화가 없었다. 흑마늘 내의 17종 아미노산중 13종 아미노산 함량이 증가하였다. 특히 함황아미노산인 cysteine 및 methionine의 함량(mg/100 g)이 각각 $295.25{\pm}5.08$에서 $381.86{\pm}14.86$로, $47.2{\pm}3.92$에서 $66.6{\pm}1.08$로 증가하였고, histidine의 함량(mg/100 g)은 $319.19{\pm}5.42$에서 $796.62{\pm}7.01$로 크게 증가하였다. SAC 및 DADS의 함량(${\mu}g/g$)은 $245.35{\pm}1.35$에서 $522.51{\pm}1.19$로, $0.275{\pm}0.015$에서 $8.710{\pm}0.45$로 각각 2배와 30배 이상으로 생마늘에 비하여 흑마늘 내의 함량이 매우 큰 폭으로 증가하였다. 이러한 현상은 자가숙성발효라는 제조과정에서 생마늘의 alliin이 1차적으로 효소와 기타 화학적 반응에 의해 allicin으로 전환된 후, allicin으로부터 다른 일련의 복합적인 화학반응에 의하여 많은 양의 SAC 및 DADS가 생성된 결과에 의하여 나타났다고 할 수 있다. 또한 자가숙성 발효 과정 중 이러한 SAC 및 DADS 등과 같은 마늘 내 함황화합물들의 지표물질 생성 확인은 인체에 유익한 생리활성을 보유한 많은 종류의 다른 함황화합물들이 동시에 흑마늘 내에서 생성되었음을 암시한다. 그러나 흑마늘의 제조과정은 85~95%의 습도, $60{\sim}70^{\circ}C$에서 40여일 정도 장기간의 숙성이 필요하다. 이러한 숙성과정은 특정 미생물 또는 효소를 이용하여 단축할 필요가 있다. 또한 SAC 및 DADS 등과 같이 생리활성이 높은 함황 화합물들의 함량을 증가시킬 수 있는 새로운 가공법에 대한 연구가 필요하다.

Keywords

References

  1. Block E. 1992. The chemistry of garlic and onions. Sci Am 252: 114-119.
  2. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. 2001. Intake of garlic and its bioactive components. J Nutr 131: 955S-962S. https://doi.org/10.1093/jn/131.3.955S
  3. Lancaster JE, Shaw ML. 1989. $\gamma$-Glutamyl peptides in the biosynthesis of S-alk(en)yl-L-cysteine sulfoxides (flavor precursors) in allium. Phytochemistry 28: 455-460. https://doi.org/10.1016/0031-9422(89)80031-7
  4. Yu TH, Wu CM. 1989. Stability of allicin in garlic juice. J Food Sci 54: 977-981. https://doi.org/10.1111/j.1365-2621.1989.tb07926.x
  5. Melino S, Sabelli R, Paci M. 2011. Allyl sulfur compounds and cellular detoxification system: effects and perspectives in cancer therapy. Amino Acids 41: 103-112. https://doi.org/10.1007/s00726-010-0522-6
  6. Lawson LD. 1998. Garlic; a review of its medicinal effects and indicated active compounds. In Phytomedicines of Europe; Chemistry and Biological Activity. American Chemical Society, Washington, DC, USA. Vol 691, p 176-209.
  7. Jang EK, Seo JH, Lee SP. 2008. Physiological activity and antioxidantive effects of aged black garlic extract. Korea J Food Sci 40: 443-448.
  8. Block E, Naganathan S, Putman D, Zhao ST. 1992. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsoms), leek, scallion, shallot, elephant (great headed) garlic, chive, and Chinese chive. Uniguely high allyl to methyl ratios in some garlic samples. J Agric Food Chem 40: 2418-2430. https://doi.org/10.1021/jf00024a017
  9. Block E. 1992. The organosulfur chemistry of the genus allium-implications for the organic chemistry of sulfur. Angew Chem Int Ed Engl 31: 1135-1178. https://doi.org/10.1002/anie.199211351
  10. Rosen RT, Hiserodt RD, Fukuda EK, Ruiz RJ, Zhou Z, Lech J, Rosen SL, Hartman TG. 2001. Determination of allcin, S-allylcysteine and volatile metabolites of garlic in breath, plasma or simulated gastric fluids. J Nutr 131: 968S-971S. https://doi.org/10.1093/jn/131.3.968S
  11. Mutsch-Eckner M, Sticher O, Meier B. 1992. Reversed phase high performance liquid chromatography of S-alk(en)yl-L-cysteine derivatives in Allium sativum including the determination of (+)-S-allyl-L-cystene sulfoxid, r-L-glutamyl-S-allyl-L-cysteine and r-L-glutamyl-S-(trans-1-propenyl)-L-cyteine. J Chromatogr 625: 183-190. https://doi.org/10.1016/0021-9673(92)85201-4
  12. Sato E, Kohno M, Hamano H, Niwano Y. 2006. Increased antioxidative potency of garlic by spontaneous short term fermentation. Plant Foods Hum Nutr 61: 157-160. https://doi.org/10.1007/s11130-006-0017-5
  13. Wan X, Polyakova Y, Row KH. 2007. Determination of diallyl disulfide in garlic by reversed-phase high performance liquid chromatography. Anal Sci Technol 20: 442-447.
  14. Iberl B, Winkler G, Knobloch K. 1990. Products of allicin transformation; ajoenes and dithiins, characterization and their determination by HPLC. Planta Med 56: 202-211. https://doi.org/10.1055/s-2006-960926

Cited by

  1. Investigation on Biogenic Amines in Plant-based Minor Korean Fermented Foods vol.56, pp.2, 2013, https://doi.org/10.3839/jabc.2013.019
  2. Effects of the Aging Conditions on the Quality Characteristics of Garlic vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.745
  3. Analysis of Active Components of Giant Black Garlic vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1672
  4. Effect of convective drying pretreatment on the physicochemical properties of black garlic vol.1194, pp.None, 2018, https://doi.org/10.17660/actahortic.2018.1194.119
  5. Effect of aged garlic powder on physicochemical characteristics, texture profiles, and oxidative stability of ready-to-eat pork patties vol.32, pp.7, 2012, https://doi.org/10.5713/ajas.18.0689
  6. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review vol.26, pp.16, 2012, https://doi.org/10.3390/molecules26165028