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Consensus Control for Switched Multi-agent Systems
with Interval Time-varying Delays
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Abstract: This paper considers multi-agent systems with interval time-varying delays and switching interconnection topology. By
construction of a suitable Lyapunov-Krasovskii’s functional, new delay-dependent consensus control conditions for the systems are
established in terms of LMIs (Linear Matrix Inequalities) which can be easily solved by various effective optimization algorithms.
One numerical example is given to illustrate the effectiveness of the proposed methods.
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1. INTRODUCTION

MASs (Multi-Agent Systems) have received considerable
attentions due to their extensive applications in many fields such
as biology, physics, robotics, control engineering, and so on [1-
3,17-19,22,23]. A prime concern in these systems is the agreement
of a group of agents on their states of leader by interaction.
Namely, this problem is a consensus problem. Specially,
consensus problem with a leader is called a leader-following
consensus problem or consensus regulation. Recently, this
problem has been applied in various fields such as vehicle systems
[4], intelligent decision support system for power grid dispatching
[5] and networked control systems [6].

During the last few years, the MASs are being put to use in the
consensus problem for time-delay which occurs due to the finite
speed of information processing in the implementation of this
system. It is well known that time-delay often causes undesirable
dynamic behaviors such as performance degradation, and
instability of the network. It should be pointed out that analyzing
the consensus problem of the MASs with time-delay can be
regarded as investigating the asymptotical stability of MASs.
Since the consensus issue is a prerequisite to the applications of
MASs, various approaches to consensus criteria for MASs with
time-delay have been investigated in the literature [7-10]. By
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Lyapunov-based approach and related space decomposition
technique, a coordination problem was addressed for the MASs
with jointly connected interconnection topologies [7]. Xiao et al.
[8] had studied a consensus problem for discrete-time MASs with
changing communication topologies and bounded time-varying
communication delays. Tian et al. [9] studied the consensus
problem for the MASs with both communication and input delays.
By construction of a Lyapunov-Krasovskii’s functional with the
idea of delay partitioning, Qin et al. [10] derived consensus
condition in directed networks of agents with switching topology
and time delay. The above mentioned literature mainly have
addressed for the consensus conditions of the MASs. However,
consensus controller design for MASs has not been fully
investigated yet.

Motivated by this mentioned above, in this paper, new delay-
dependent consensus control problem for MASs with interval
time-varying delays and switching interconnection topology will
be studied. Here, delay-dependent analysis has been paid more
attention than delay-independent one because the sufficient
conditions for delay-dependent analysis make use of the
information on the size of time delay [11]. That is, the former is
generally less conservative than the latter. By construction of a
suitable Lyapunov-Krasovskii’s functional, the criteria are derived
in terms of LMIs which can be solved efficiently by use of
standard convex optimization algorithms such as interior-point
methods [12]. One numerical example is included to show the
effectiveness of the proposed methods.

Notation: R" is the n -dimensional Euclidean space, and
R™" denotes the set of mxn real matrix. For symmetric
matrices X and Y, X >Y (respectively, X >Y ) means that the
matrix X —Y is positive definite (respectively, nonnegative).
X* denotes a basis for the null-space of X. 1 and 0 denotes
identity matrix and zero matrix, respectively, with appropriate
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dimensions. || - || refers to the Euclidean vector norm and the

induced matrix norm. diag{--} denotes the block diagonal
matrix. * represents the elements below the main diagonal of a
symmetric matrix. ® stands for the notation of Kronecker
product.

I1. PROBLEM STATEMENTS
The interaction topology of a network of agents is represented
using an undirected graph G =(A,V,A) with a node set

A={1,..,N}, an edge set V={(i,]):i,jeA}cAxA, and
an adjacency matrix A=[a;]e RYN  of a graph is a matrix with
nonnegative elements satisfying a;=0and a; =a; >0. If there

is an edge between i and j, then the elements of matrix A
described as a; =a; >0« (i, j) € V. The set of neighbors of

node i is denoted by N={jeA:(i,j)eV}. The degree of
node i is denoted by deg(i):szaﬂ. The degree matrix of
graph G is diagonal matrix defined as D =diag{deg(d),...,

deg(N)}. The Laplacian matrix L of graph G is defined as

L =D— A More details can be seen in [13].
Consider the MASs with the following dynamic of agent i

% (t) = Fx, (t) + Bu,(t), i=1...N, @)

where N is the number of agents, x(t)eR"is the state of
agent i, u,(t)eR™ is the consensus protocol, and F e R™"

and BeR™™ are known constant matrices.
According to the work [1] and [7], an algorithm of consensus
protocol can be described as

LM =K - Y a,xO-xO) i=l..N, @

JeN;

where K eR™ is protocol gain matrix, a; are the
interconnection weights defining

a; >0, ifagenti is connected to agent j,
a; =0, otherwise.

The multi-agent system is said to achieve consensus if the
following definition.

Definition 1 [20,21]: Given an undirected communication
graph G, the multi-agent systems (1) are said to be consensusable
under the protocol (2) if for any finite x(0), i=1..,N, the

control protocol can asymptotically drive all agents close to each
other, i.e.,

!im I x®-x;O =0, i=1..,N.
With communication delay, a consensus algorithm can be

U, (8) = Kx; (1) = D a; (%, (1) = %;(t = h(1))). ©)

jeN;
Here, h(t) is a interval time-varying continuous function satisfying

0<h, <h(t)<h,, h(t)<h,,

Ho
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where h,,, and hy, are positive scalars.
In this paper, we consider consensus for MASs with consensus
algorithm (3) and switching interconnection topology. It should be

noted that G denote the topology composed of the agents, and
®={G*,k =1,...,N} defined the union of the topology.

A model of Multi-agent systems with the consensus algorithm
(3) and switching interconnection topology are summarized as

X () :(F +BK - aiﬁBin(t) + 2 a;Bx;(t=h(1)), @
i=1..,N, k=p(t), GeoO,

where 1, ={L..,N} are the index set associated with the
elements of ©, p(t):R* — 1, isaswitching signal.

For the convenience, let us define X" (t) = [x{ (t),..., x, (t)].

Then, the system (4) can be rewritten as

x(t) = (1, ® (F + BK) — (D* ® B)x(t)

K ®)
+H(A*®@B)x(t - h(t)),

where

A <l O <t 3o T .

jeN; jeN;

The aim of this paper is to design the delay-dependent
consensus control of the multi-agent systems (5) with interval
time-varying delays and switching interconnection topology. This
means a consensus stability analysis for the system (5). In order to
do this, we introduce the following definition and lemmas.

Lemma 1 [14]: For any constant matrix M =M™ >0, the
following inequality holds:

G xt) T[m M xo
h(t)'[lihmx (s)Mx(s)dsz{X(t_h(t))} L y Mx(t_h(t))}

Lemma 2 [15]: Let £ eR", ®=®" ¢R™", and ¥ e R™"
such that rank () < n. The following statements are equivalent:
() {'®S<0, V¢&=0, ¢#0,
(i) YTO¥" <0.
111. MAIN RESULTS

In this section, we propose new consensus criterion and
controller design method for system (5). For simplicity of matrix

representation, e (i=1...,5) e R>™™" are defined as block
entry matrices (e.g., e, =[0,1,0,0,0]" ). The notations of several
matrices are defined as:

ST =[x, x"(t=h ), x" (t=h(t)),x" (t=h,),x O],
¥ =[(I, ®(F + BK) - (D" ®B),0,,,, (A* ® B),0,,,— \,,],
E, =e(l, ®P)e! +e,(I, ®P)e/,

=, :el((IN ®(Q1+Q2))e1T _ez(IN ®(Q1—Q3))9;
_(l_hd)e3(|N ®Q2)e; _eA(IN ®Q3)el,
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23 =es(Iy ® (R, + (g —hy)*Ry))ed
—(er—&)(Iny ®R)(e— &))"
— (& —e3)(In ®Ry)(e —3)" — (B3 —€4)(Iy ® Ry)(e3— )"
—(e2—e3)(Iy ®S)(e3—4)" —(e3—€4)(In ®S)" (62 -€3)",

3
=3 =, ®)
Now, we have the following theorem.

Theorem 1. For given positive scalars h,, hy and hy, the agents
in the system (5) are asymptotically consented for switching

signal p(t), if there exist positive definite matrices P € R™",
QeR™(=123), ReR™(i=12) and any matrix
S e R™" satisfying the following LMIs:

[T o[ ¥*]<0, @)
TN

where ® and W* are defined in (6).
Proof: Let us consider the following Lyapunov-Krasovskii’s
functional candidate as

V =V, 4V, +V,, e
where
V= x"(t)(Iy @ P)x(t),
V=] X O @QX(Eds [ K ($)(1, ©Q,)x(5)ds
[0, ©Qx(E)s,
Vo=h, :,hm (h, —t+38)X" (s)(1, ® R)X(s)ds

+(hy =) [T ((hy —hy) ~t+ )X ()1, ® R,)X(S)ds.

The time-derivative of V is calculated as

v, =2x" ()1, ® P)X(t),

V, =x" (0, ®(Q +Q,))x(t)
—x"(t=h,)(I, ®(Q - Q))x(t-h,)
— (1= hy)X" (t=h(t)(1, ®Q,)x(t—h(t)
—x"(t- hy)(1, ®Q,)x(t—h,,),

V, =X ()(1y ® (hiR, + (hy, —h,)?R,))X(s)

~h,[* K (9)(1, ®R)X(S)ds

(10)

~(hy )] X1 @ R)X(s)ds,

By using Lemma 1 and Theorem 1 in [16], the integral terms of
the V, can be bounded as

—h,[ ih £ (s)(1,, ® R)X(s)ds

J[oxo T[-0eer) ver) T x®
“Lxt-h,) # =(y®R)JIxt=h,)]

~(hy ~h)[ K (S)(1, ®R,)X(s)ds

=—~(h ~h)[ v K (6)(1, @ R,)X(s)ds

t=h(t) | .
~(hy =h)[ X ()1 ®RIX(S)ds
Met-h, . Tl t-h, |
_ JopX@ds | [7=— (1, @R,) 0 [ o X()ds
- t-ht) | t-ht) |
_Jl—hM X(s)ds * £(|N®R2) J‘Fhm X(s)ds
[ pt-hn . d ¥ t=hy d
e {(m@&) (|N®S)} (S
= t-h(t) | t-h() '
_It—hM x(s)ds * (I ®R,) It—hM x(s)ds
(11)

where a = (h,, —h(®))(h, —h,)™
Therefore, from (9)-(11), the V  has a new upper bound as

V < ODS). 12

Also, the system (5) with the augmented vector <£(t) can be

rewritten as P*C(t)=0. Then, a delay-dependent stability
condition for the system (5) is

CT(R)DL(L) <0 subjectto W £ (t) <O. (13)

where @, P* and £(t) are defined in (6).
Here, there exist a positive scalar & such that ® <—¢l . From

(12) and (13), we have V < —ng(t)Hz. Therefore, by Lyapunov

theorem, it can be guaranteed that the system (5) is asymptotically
stable.

Finally, by utilizing Lemma 2, the condition (13) is equivalent
to the following inequality

[P [P ]<0. 14

From the inequality (14), if the LMIs (7) satisfy, then stability
condition (13) holds. This completes our proof. |

Theorem 1 provides consensus criterion for system (5) in the
framework of LMIs when the consensus protocol gain is known.
Based on the results of Theorem 1, we will propose consensus
controller design method for system (5) which will be introduced
as Theorem 2.

To design the consensus protocol gain, we add the following
zero equation with any matrices Z; and Z, to be chosen as

0=2(x" ()1, ®Z)+X (O)(1, ®Z)P*C(N).  (15)

This zero equality will be used in Theorem 2. The notations of
several matrices are defined for the simplicity of matrix
representation in Theorem 2.

Q = XQX(i=123), R =XRX(i=12), S=XsX,
P =k _[(1, ®BK),0,0,0,0], ¥=[(I, ®B),0,0,0,0],
X =diag{(l, ® X),....(1, ® X)},

Y =diag{(l, ®Y),....(I, ®Y)},

D=¢e(l, ®X)el +e,(l, ®X)el
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+e1((IN ®(61+62))9I _ez(IN ®(61_63))e;
_(l_hd)ea(IN ®Qz)e; _e4(IN ®63)EI
+es(Iy ® (R + (y —h)*Ry))eg
—(e—e)(Iy ®Ry) (e — €)'

—(e2-e3)(Iy ®Rp) (e, —€3)"
~(e3—e4)(Iy @ Ry)(e3—4)"
~(ez—e3)(Iy ®S)(e3—e4)"
~(e3—e)(In ®S) (e —€3)",
JZLI Vil '
0 0
Q= 0 (‘i’k)?+\i’\7)+ 0 (‘f’@?#@?) . (16)
0 0
Vol 72l

Theorem 2: For given positive scalars hy, hy, hy and the
parameters 7y, 7., the agents in the system (5) are asymptotically
consented for switching signal p(t), if there exist positive definite

matrices X eR™, Q eR™(i=123), R eR"™(i=12)

and any matrices S eR™" and Y e R™" satisfying Eq. (8)
and the following LMIs:

D +0F <0, n
where ® and QX are defined in (16).

Then, system (5) under the consensus protocol gain K =YX ™
is asymptotically stable.

Proof: Let us define Z, =y,P and Z,=y,P in (15). With
the same Lyapunov-Krasovskii’s functional candidate in (9), by
using the similar method in (10) and (11), and considering zero
equality in (15), a sufficient condition guaranteeing asymptotic
stability for the system (5) can be

T

Iy ®»P Iy ®»P
0 0
D+ 0 P 0 v | <0, (18)
0 0
|, ®7,P I, ®7,P

where @ and P* are defined in (6).
Let us define X =P~ and Y =KX. Then, pre- and post-

multiplying inequality (18) by matrix X which is defined in
(16) leads to LMIs (17). |

IV. NUMERICAL EXAMPLES
In this section, one numerical example to illustrate the
effectiveness of the proposed criteria will be shown.
Example 1: Consider the Multi-agent systems (5) with the
switching interconnection topology described in Fig. 1 and the

following parameters
o o1t *o 3]

Here, the agents in Fig. 1 can be seen in the sense that each
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agent, e.g., unmanned vehicle and soccer robot, needs information

from its local neighborhood.
From Fig. 1, at switching interconnection topology are

* Topology 1:
0 050 0 05 0 0 O
, |0 0o o001 , |0 01 0 0O
“lo 070 o |0 o0 07 O
03 0 0 O 0 0 0 03

* Topology 2:
0 0 04 0 04 0 0 O
N 06 0 0 O D - 0 06 0 O
“lo 01 0 o/ |0 0 01 O
05 0 0 O 0 0 0 05

For the system above, the protocol gain K with fixed h,=1, hy
=5hy=05and y, =y, =1 by Theorem2is

{ J

In order to confirm the obtained results with the condition of
the time-delay as h(t) =4sin(0.12t) +1, the simulation results
for the state responses are shown in Figs. 2 and 3. The switching

—2.2387
0

-1
-1.1387

(18)

(a) Topology 1. (b) Topology 2.
9 1 dA 19 EEEA.
Fig. 1. Topologies of Example 1.
400 T
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=rmeme X12(t)
300 — x21(t)
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— x31()
2001 ==e== x32(t)
— x41(t)
e x42(t)
100 / /
0 _ T
——
P —— T
¢ TN T~
-100
-200 \
-300 \
-400 v
-500
0 1 2 3 4 6 7 8 9 10

Time (Seconds)
% 2. 015 K=0 & 23 e S
Fig. 2. State responses with K=0.
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3 x21(t) ||
-rmeme x22(t)

\ —— x31()

) —rmeme x32(t)

—— x41()

X0
o

0 1 2 3 4 5 6 7 8 9 10
Time (Seconds)

7 3.(18)] ¥olx o5 K & g A S
Fig. 3. State responses with the obtained gain K in (18).

period of interconnection topology is 0.5 seconds. In Fig. 2, by
reason of the instability of the system dynamics, the eigenvalues
of the matrix F is 1 and -0.1, we know that the necessity of the
protocol gain K. Fig. 3 shows that the systems with the state
responses converge to zero under the obtained gain K in (18). This
means the consensus stability of the system.

V. CONCLUSIONS

In this paper, the delay-dependent consensus control problem
for the MASs with interval time-varying delays and switching
interconnection topology is studied. To do this, the suitable
Lyapunov-Krasovskii’s functional is used to investigate the
feasible region of consensus criterion. Based on this, consensus
control gain for the concerned systems has derived. One
numerical example has been given to show the effectiveness and
usefulness of the presented criteria.
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