DOI QR코드

DOI QR Code

산화적 스트레스와 관련하여 신경세포의 활성에 미치는 강황 열수추출물의 영향에 대한 연구

Effect of Curcuma longa Hot Water Extract on Activity of Neuronal Cells Related to Oxidative Stress

  • 투고 : 2012.03.19
  • 심사 : 2012.04.10
  • 발행 : 2012.05.30

초록

본 연구의 목적은 인지기능을 가진 약효제를 발굴하는 것이다. 본 연구에서는 토끼의 간과 신경세포로부터 각각 유래한 angiotension converting enzyme과 acetylcholinesterase에 대한 강황 열수추출물(CLWE)의 억제효과 뿐만 아니라 항산화 효과가 조사되었다. 이리하여 먼저 산화적 스트레스와 연관이 있는 환원력과 DPPH radical, superoxide anion, hydroxyl radical, lipid peroxidation에 대한 CLEW의 소거능 및 DNA 산화에 대한 보호효과를 평가하였다. CLEW는 환원력 뿐만 아니라 본 연구에서 시험된 활성산소종 중에서 특히 superoxide anion의 소거능이 가장 우수한 것으로 나타났다. 더욱이 CLEW는 0.25% 이상의 농도에서 angiotensin converting enzyme 활성을 억제효과를 발휘하는 것으로 나타났다. 신경세포에서 CLEW는 또한 산화적 스트레스와 nitric oxide 유발을 억제하였다. 그러므로 이상의 결과는 CLEW의 항산화 효과와 신경세포 보호효과를 입증하여, 이것이 사람의 신경건강을 위한 천연생물소재로 잠재적인 가능성을 가지고 있을 것으로 시사한다.

The aim of this study is to screen a therapeutic agent with a cognitive function. The inhibitory effect of $Curcuma$ $longa$ hot water extract (CLWE) on the angiotension-converting enzyme and acetylcholinesterase derived from rabbit lungs and neural cells (PC12), as well as its antioxidant effect, was investigated in this study. Thus, for the first time, the direct scavenging effect of CLWE on DPPH radicals, superoxide anions, hydroxyl radicals, lipid peroxidation, reducing power, and the protective effect of DNA oxidation related to oxidative stress was evaluated in vitro. In addition, it was observed that CLWE especially exhibited a scavenging effect on reducing power and superoxide anions in this study. CLWE showed a protective effect on DNA oxidation produced by hydroxyl radicals. Furthermore, CLWE inhibited the activity of angiotensin-converting enzymes above 0.25%. Additionally, the extract inhibited oxidative stress and inducible nitric oxide in neuronal cells. Therefore, these results demonstrated that CLWE has antioxidant activity and neuronal cell protective effects, suggesting that it may have great potential as a natural source for human health.

키워드

참고문헌

  1. Brune, B., Zhou, J. and Von Knethen, A. 2003. Nitric oxide, oxidative stress, and apoptosis. Kidney Int. 63, S22-S24.
  2. Canal, N. and Imbimbo, B. P. 1996. Relationship between pharmacodynamic activity and cognitive effects of eptastigmine in patients with Alzheimer's disease&ast. Clin. Pharmacol. Ther. 60, 218-228. https://doi.org/10.1016/S0009-9236(96)90138-1
  3. Choi, C. S., Song, E. S., Kim, J. S. and Kang, M. H. 2003. Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J. Food Sci. Technol. 35, 1216-1220.
  4. Claria, J. 2003. Cyclooxygenase-2 biology. Curr. Pharm. Des. 9, 2177-2190. https://doi.org/10.2174/1381612033454054
  5. Davies, K., Delsignore, M. and Lin, S. 1987. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 262, 9902-9907.
  6. Davies, P. 1976. Selective loss of central cholinergic neurons in Alzheimers disease. Lancet 1, 1403.
  7. Fantone, J. C. and Ward, P. 1982. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 107, 395-418.
  8. Fiers, W., Beyaert, R., Declercq, W. and Vandenabeele, P. 1999. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719-7730.
  9. Fridovich, I. 1997. Superoxide Anion Radical (O.-2), Superoxide Dismutases, and Related Matters. J. Biol. Chem. 272, 18515-18517. https://doi.org/10.1074/jbc.272.30.18515
  10. Halliwell, B. 1997. Antioxidants and human disease: a general introduction. Nutr. Rev. 55, S44-S49.
  11. Han, S., Lee, S., Yun, C., Kang, S., Lee, K., Kim, I., Yun, E., Lee, P., Kim, S. and Hwang, J. 2006. Inhibition of Nitric Oxide Production by ladybug extracts (Harmonia axyridis) in LPS-activated BV-2 cells. Korean J. Appl. Entomol. 45, 31-36.
  12. Hansen, M. B., Nielsen, S. E. and Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
  13. He, X. G., Lin, L. Z., Lian, L. Z. and Lindenmaier, M. 1998. Liquid chromatography-electrospray mass spectrometric analysis of curcuminoids and sesquiterpenoids in turmeric (Curcuma longa). J. Chromatogr. A. 818, 127-132. https://doi.org/10.1016/S0021-9673(98)00540-8
  14. Heo, H., Choi, S., Choi, S. G., Shin, D. H., Lee, J. and Lee, C. 2008. Effects of banana, orange, and apple on oxidative stress-induced neurotoxicity in PC12 cells. J. Food Sci. 73, H28-H32. https://doi.org/10.1111/j.1750-3841.2007.00632.x
  15. Heo, H. J., Kim, D. O., Choi, S. J., Shin, D. H. and Lee, C. Y. 2004. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid $\beta$ protein-induced neurotoxicity. J. Agric. Food Chem. 52, 4128-4132. https://doi.org/10.1021/jf049953x
  16. Korolainen, M. A., Nyman, T. A., Nyyssonen, P., Hartikainen, E. S. and Pirttila, T. 2007. Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin. Chem. 53, 657-665. https://doi.org/10.1373/clinchem.2006.078014
  17. Lee, S. H., Kim, D. I., Cho, S. Y., Jung, H. J., Cho, S. M., Park, H. J. and Lillehoj, H. S. 2005. Effects of acorn (Quercus acutissima CARR.) supplementation on the level of acetylcholine and its related enzyme activities in the brain of dementia mouse model. J. Korean Soc. Food Sci. Nutr. 34, 738-742. https://doi.org/10.3746/jkfn.2005.34.5.738
  18. Ma, S. J. 2000. Inhibitory effect of onion seasoning on angiotensin converting enzyme. J. Korean Society Food Sci. Nutr. 29, 395-400.
  19. Mayer, B. and Hemmens, B. 1997. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem. Sci. 22, 477-481. https://doi.org/10.1016/S0968-0004(97)01147-X
  20. Milne, L., Nicotera, P., Orrenius, S. and Burkitt, M. 1993. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304, 102-109. https://doi.org/10.1006/abbi.1993.1327
  21. Musial, A., Bajda, M., and Malawska, B. 2007. Recent Developments in Cholinesterases Inhibitors for Alzheimers Disease Treatment. Curr. Med. Chem. 14, 2654-2679. https://doi.org/10.2174/092986707782023217
  22. Nunomura, A., Castellani, R. J., Zhu, X., Moreira, P. I., Perry, G. and Smith, M. A. 2006. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 631-641. https://doi.org/10.1097/01.jnen.0000228136.58062.bf
  23. Oyaizu, M. 1986. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Japanese J. Nutrition [Eiyogaku Zasshi] 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  24. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual: CSHL press.
  25. Selkoe, D. J. 2000. Toward a comprehensive theory for Alzheimer's disease. hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid $\beta$-protein. Ann. N. Y. Acad. Sci. 924, 17-25.
  26. Sharma, R., Gescher, A. and Steward, W. 2005. Curcumin: the story so far. Eur. J. Cancer 41, 1955-1968. https://doi.org/10.1016/j.ejca.2005.05.009
  27. Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K. and Perry, G. 2000. Oxidative stress in Alzheimer's disease. BBA-Mol. Basis Dis. 1502, 139-144. https://doi.org/10.1016/S0925-4439(00)00040-5
  28. Talesa, V. N. 2001. Acetylcholinesterase in Alzheimer's disease. Mech. Ageing Dev. 122, 1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
  29. Tang, W. and Eisenbrand, G. 1992. Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. pp 401-415, Springer, Berlin.
  30. Wenk, G. L. 2006. Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J. Clin. Psychiatry 67, 3-7. https://doi.org/10.4088/JCP.0706e03
  31. Yang, Y. H., Jung, Y. and Chung, H. Y. 2001. Peroxynitrite and hydroxyl radical scavenging activity of dihydroxybenzaldehydes. Kor. J. Gerontol. 11, 24-28.