DOI QR코드

DOI QR Code

Regular Endurance Exercise Decreases Blood Pressure via Enhancement of Angiogenesis and VEGF Expression in Spontaneously Hypertensive Rats

규칙적인 지구성운동이 고혈압쥐 골격근의 혈관생성과 VEGF 발현의 증가를 통한 혈압감소에 미치는 효과

  • Li, Wei (Department of Sports Science, Chungnam National University) ;
  • Park, Hee-Geun (Department of Sports Science, Chungnam National University) ;
  • Lee, Young-Ran (Department of Sports Science, Chungnam National University) ;
  • Jang, Hak-Young (Department of Sports Science, Chungnam National University) ;
  • Choo, Sung-Ho (Department of Sports Science, Chungnam National University) ;
  • Lee, Young-Hwa (Department of Sports Science, Chungnam National University) ;
  • Gan, Li (Department of Sports Science, Chungnam National University) ;
  • Jun, Jong-Kui (Department of Sports Science, Chungnam National University) ;
  • Lee, Wang-Lok (Department of Sports Science, Chungnam National University) ;
  • Lee, Sang-Ki (Department of Sports Science, Chungnam National University)
  • 이위 (충남대학교 스포츠과학과) ;
  • 박희근 (충남대학교 스포츠과학과) ;
  • 이영란 (충남대학교 스포츠과학과) ;
  • 장학영 (충남대학교 스포츠과학과) ;
  • 추성호 (충남대학교 스포츠과학과) ;
  • 이영화 (충남대학교 스포츠과학과) ;
  • 감력 (충남대학교 스포츠과학과) ;
  • 전종귀 (충남대학교 스포츠과학과) ;
  • 이왕록 (충남대학교 스포츠과학과) ;
  • 이상기 (충남대학교 스포츠과학과)
  • Received : 2012.03.29
  • Accepted : 2012.05.15
  • Published : 2012.05.30

Abstract

This study investigated the effect of endurance exercises on blood pressure, angiogenesis, and the vascular endothelial growth factor (VEGF) expression in the skeletal muscle of spontaneously hypertensive rats (SHR). Five week old SHRs and Wistar-Kyoto rats (WKY) were randomly divided into 3 groups: Wistar-Kyoto rats (WKY, n=9), SHR control (SHR-C, n=9), and SHR endurance exercise training (SHR-E, n=9). Endurance exercise training was performed on a treadmill (12-20 m/min, 0% grade, 60 min/day, 5 days/week, 16 weeks). Systolic blood pressure was monitored with the tail-cuff method. The expression of VEGF protein and capillary density were identified using western blotting and H&E staining in the soleus muscle, respectively. Systolic blood pressure was reduced by endurance exercise in SHR ($p$ <0.05). The capillary density of skeletal muscles in SHR-C was lower than in WKY ($p$ <0.05), but it was recovered by endurance exercise training (SHR-E) compared to SHR-C ($p$ <0.05), and VEGF protein was also increased by endurance exercise training compared to SHR-C ($p$ <0.05). These data suggest that the enhancement of capillary density via an increase of VEGF expression in skeletal muscles by endurance exercise training could be an important factor to inhibit blood pressure elevation in SHR.

이 연구는 자연발생고혈압쥐(SHR)의 혈압, 골격근에서의 혈관생성 및 혈관내피세포성장인자 발현(VEGF)에 미치는 지구성운동의 효과를 조사하였다. 5주령 SHR와 WKY는 무작위로 정상혈압군(WKY, Wistar-Kyoto rat, n=9), 고혈압통제군(SHR-C, SHR Control, n=9) 및 고혈압운동군(SHR-E, SHR Exercise, n=9)으로 각각 분류하였고, 지구성운동은 트레드밀을 이용하였다(12-20 m/min, 0% grade, 60 min/day, 5 days/wk, 16 wk). 수축기혈압은 지구성운동에 의해 효과적으로 감소되었다(SHR-E vs. SHR-C, $p$ <0.05). 골격근의 모세혈관밀도와 VEGF 단백발현은 고혈압통제군(SHR-C)이 정상혈압군(WKY)보다 모두 감소되었으나, 지구성운동(SHR-E)이 고혈압통제군(SHR-C)에 비해 모두 증가되었다. 이러한 결과들은 지구력운동 트레이닝이 SHR 골격근의 VEGF 단백발현의 증가를 통해 모세혈관밀도를 향상시키고, 이러한 모세혈관밀도의 향상이 SHR의 혈압상승을 억제할 수 있다는 것을 의미한다.

Keywords

References

  1. Amaral, S. L., Zorn, T. M. T. and Michelini, L. C. 2000. Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats. J. Hypertens. 18, 1563-1572. https://doi.org/10.1097/00004872-200018110-00006
  2. Amaral, S. L., Sanchez, L. S., Chang, A., Rossoni, L. V. and Michelini, L. C. 2008. Time course of training-induced microcirculatory changes and of VEGF expression in skeletal muscles of spontaneously hypertensive female rats. Braz. J. Med. Biol. Res. 41, 424-431.
  3. Bedford, T. G., Tipton, C. M., Wilson, N. C., Oppliger, R. A. and Gisolfi, C. V. 1979. Maximum oxygen consumption of rats and its changes with various experimental procedures. J. Appl. Physiol. 47, 1278-1283.
  4. Belabbas, H., Zalvidea, S., Casellas, D., Moles, J. P., Galbes, O., Mercier, J. and Jover, B. 2008. Contrasting effect of exercise and angiotensin II hypertension on in vivo and in vitro cardiac angiogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1512-R1518. https://doi.org/10.1152/ajpregu.00014.2008
  5. Berg, B. R., Cohen, K. D. and Sarelius, I. H. 1997. Direct coupling between blood flow and metabolism at the capillary level in striated muscle. Am. J. Physiol. 272, H2693-H2700.
  6. Birot, O. J. G., Koulmann, N., Peinnequin, A. and Bigard, X. A. 2003. Exercise-induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J. Physiol. 552, 213-221. https://doi.org/10.1113/jphysiol.2003.043026
  7. Breen, E. C., Johnson, E. C., Wagner, H., Tseng, H. M., Sung, L. A. and Wagner, P. D. 1996. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81, 355-361.
  8. Brown, M. D. and Hudlicka, O. 2003. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6, 1-14. https://doi.org/10.1023/A:1025809808697
  9. Chen, H. I. and Chiang, I. P. 1996. Chronic exercise decreases adrenergic agonist-induced vasoconstriction in spontaneously hypertensive rats. Am. J. Physiol. 271, H977-H983.
  10. Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T. and Roccella, E. J.; National High Blood Pressure Educ, P. 2003. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure - The JNC 7 report. JAMA. 289, 2560-2572. https://doi.org/10.1001/jama.289.19.2560
  11. Ferrara, N. and DavisSmyth, T. 1997. The biology of vascular endothelial growth factor. Endcr. Rev. 18, 4-25. https://doi.org/10.1210/er.18.1.4
  12. Gavin, T. P. and Wagner, P. D. 2001. Effect of short-term exercise training on angiogenic growth factor gene responses in rats. J. Appl. Physiol. 90, 1219-1226.
  13. Gustafsson, T., Bodin, K., Sylven, C., Gordon, A., Tyni-Lenne, R. and Jansson, E. 2001. Increased expression of VEGF following exercise training in patients with heart failure. Eur. J. Clin. Invest. 31, 362-366. https://doi.org/10.1046/j.1365-2362.2001.00816.x
  14. Greene, A. S., Lombard, J. H., Cowley, A. W. and Hansensmith, F. M. 1990. Microvessel changes in hypertension measured by Griffonia simplicifolia I-lectin. Hypertension. 15, 779-783. https://doi.org/10.1161/01.HYP.15.6.779
  15. Hansen, A. H., Nielsen, J. J., Saltin, B. and Hellsten, Y. 2010. Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension. J. Hypertens. 28, 1176-1185.
  16. Hernandez, N., Torres, S. H., Finol, H. J. and Vera, O. 1999. Capillary changes in skeletal muscle of patients with essential hypertension. Anat. Res. 256, 425-432. https://doi.org/10.1002/(SICI)1097-0185(19991201)256:4<425::AID-AR9>3.0.CO;2-X
  17. Hudlicka, O., Brown, M. and Egginton, S. 1992. Angiogenesis in skeletal and cardiac muscle. Physiol. Res. 72, 369-417.
  18. Hudlicka, O. and Brown, M. D. 2009. Adaptation of Skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J. Vasc. Res. 46, 504-512. https://doi.org/10.1159/000226127
  19. Kiefer, F. N., Neysari, S., Humar, R., Li, W., Munk, V. C. and Battegay, E. J. 2003. Hypertension and angiogenesis. Curr. Pham. Des. 9, 1733-1744. https://doi.org/10.2174/1381612033454540
  20. Kingwell, B. A. 2000. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB. J. 14, 1685-1696. https://doi.org/10.1096/fj.99-0896rev
  21. Kokkinos, P. F., Giannelou, A., Manolis, A. and Pittaras, A. 2009. Physical activity in the prevention and management of high blood pressure. Hellenic. J. Cardiol. 50, 52-59.
  22. Lee, S. K., Kim, C. S., Kim, H. S., Cho, E. J., Joo, H. K., Lee, J. Y., Lee, E. J., Park, J. B. and Jeon, B. H. 2009. Endothelial nitric oxide synthase activation contributes to post-exercise hypotension in spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 382, 711-714. https://doi.org/10.1016/j.bbrc.2009.03.090
  23. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. and Ferrara, N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309. https://doi.org/10.1126/science.2479986
  24. MacMahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., Abbott, R., Godwin, J., Dyer, A. and Stamler, J. 1990. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 335, 765-774. https://doi.org/10.1016/0140-6736(90)90878-9
  25. Milkiewicz, M., Brown, M. D., Egginton, S. and Hudlicka, O. 2001. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8, 229-241. https://doi.org/10.1038/sj.mn.7800074
  26. Neufeld, G., Cohen, T., Gengrinovitch, S. and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB. J. 13, 9-22.
  27. Noon, J. P., Walker, B. R., Webb, D. J., Shore, A. C., Holton, D. W., Edwards, H. V. and Watt, G. C. M. 1997. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J. Clin. Invest. 99, 1873-1879. https://doi.org/10.1172/JCI119354
  28. Olfert, I. M., Breen, E. C., Mathieu-Costello, O. and Wagner, P. D. 2001. Chronic hypoxia attenuates resting and exercise- induced VEGF, fit-1, and flk-1 mRNA levels in skeletal muscle. J. Appl. Physiol. 90, 1532-1538.
  29. Pajusola, K., Kunnapuu, J., Vuorikoski, S., Soronen, J., André, H., Pereira, T., Korpisalo, P., Yla-Herttuala, S., Poellinger, L. and Alitalo, K. 2005. Stabilized HIF-1alpha is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. FASEB. J. 19, 1365-1367.
  30. Schmidt-Trucksass, A., Sandrock, M., Cheng, D. C., Muller, H. M., Baumstark, M. W., Rauramaa, R., Berg, A. and Huonker, M. 2003. Quantitative measurement of carotid intima-media roughness - effect of age and manifest coronary artery disease. Atherosclerosis 166, 57-65. https://doi.org/10.1016/S0021-9150(02)00245-9
  31. Stamler, J., Stamler, R. and Neaton, J. D. 1993. Blood pressure, systolic and diastolic, and cardiovascular risks. united states population data. Arch. Intern. Med. 153, 598-615. https://doi.org/10.1001/archinte.1993.00410050036006
  32. Tang, K., Breen, E. C., Gerber, H. P., Ferrara, N. M. A. and Wagner, P. D. 2004. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol. Genomics 18, 63-69. https://doi.org/10.1152/physiolgenomics.00023.2004
  33. Vasan, R. S., Larson, M. G., Leip, E. P., Kannel, W. B. and Levy, D. 2001. Assessment of frequency of progression to hypertension in nonhypertensive participants in the framingham heart study: a cohort study. Lancet 358, 1682-1686. https://doi.org/10.1016/S0140-6736(01)06710-1
  34. Vilar, J., Waeckel, L., Bonnin, P., Cochain, C., Loinard, C., Duriez, M., Silvestre, J. S. and Levy, B. I. 2008. Chronic hypoxia-induced angiogenesis normalizes blood pressure in spontaneously hypertensive rats. Circ. Res. 103, 761-769. https://doi.org/10.1161/CIRCRESAHA.108.182758
  35. Yen, M. H., Yang, J. H., Sheu, J. R., Lee, Y. M. and Ding, Y. A. 1995. Chronic exercise enhances endothelium mediated dilation in spontaneously hypertensive rats. Life Sci. 57, 2205-2213. https://doi.org/10.1016/0024-3205(95)02127-5