DOI QR코드

DOI QR Code

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation

  • Park, Jin-Ku (Department of Chemistry, Mokpo National University) ;
  • Kim, Soon-Jong (Department of Chemistry, Mokpo National University)
  • 투고 : 2012.02.02
  • 심사 : 2012.02.28
  • 발행 : 2012.06.20

초록

We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.

키워드

참고문헌

  1. Lindquist, S.; Craig, E. A. Annu. Rev. Genet. 1988, 22, 631. https://doi.org/10.1146/annurev.ge.22.120188.003215
  2. Richter, K.; Haslbeck, M.; Buchner, J. Mol. Cell 2010, 40, 253. https://doi.org/10.1016/j.molcel.2010.10.006
  3. Wu, C. Ann. Rev. Cell & Dev. Biol. 1995, 11, 441. https://doi.org/10.1146/annurev.cb.11.110195.002301
  4. Lis, J.; Wu, C. Cell 1993, 74, 1. https://doi.org/10.1016/0092-8674(93)90286-Y
  5. Fernandes, M.; Xiao, H.; Lis, J. T. Nucleic Acids Res. 1994, 22, 167. https://doi.org/10.1093/nar/22.2.167
  6. Sakurai, H.; Takemori, Y. J. Biol. Chem. 2007, 282, 13334. https://doi.org/10.1074/jbc.M611801200
  7. Harrison, C. J.; Bohm, A. A.; Nelson, H. C. Science 1994, 263, 224. https://doi.org/10.1126/science.8284672
  8. Vuister, C. W.; Kim, S.-J.; Oresz, A.; Marquardt, J.; Wu, C.; Bax, A. Nat. Struct. Biol. 1994, 1, 605. https://doi.org/10.1038/nsb0994-605
  9. Hardy, J. A.; Walsh, S. T. R.; Nelson, H. C. M. J. Mol. Biol. 2000, 295, 393. https://doi.org/10.1006/jmbi.1999.3357
  10. Akerfelt, M.; Morimoto, R. I.; Sistonen, L. Nat. Rev. Mol. Cell Biol. 2010, 11, 545. https://doi.org/10.1038/nrm2938
  11. Fujimoto, M.; Nakai, A. FEBS J. 2010, 277, 4112. https://doi.org/10.1111/j.1742-4658.2010.07827.x
  12. Littlefield, O.; Nelson, H. C. Nat. Struct. Biol. 1999, 6, 464. https://doi.org/10.1038/8269
  13. Park, J.; Kim, S.; Kim, S.-J. Bull. Korean Chem. Soc. 1999, 20, 636.
  14. Kim, S.-J.; Tsukiyama, T.; Lewis, M. S.; Wu, C. Protein Sci. 1994, 3, 1040. https://doi.org/10.1002/pro.5560030706
  15. Lewis, M. S.; Shrager, R. I.; Kim, S.-J. In Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems; Schuster, T. M., Laue, T. M., Eds.; Birkhuser Inc.: Boston, U.S.A., 1994; p 94.
  16. Puglisi, J.; Tinoco, I., Jr. Methods Enzymol. 1990, 180, 304.
  17. Durchschlag, H. In Thermodynamic Data for Biochemistry and Biotechnology; Hinz, H.-J., Ed.; Springer-Verlag: New York, USA, 1986; p 46.
  18. Strang G. In Introduction to Applied Mathematics; Wellesley-Cambridge Press: Massachusetts, USA, 1986; p 138.
  19. Clarke, C. W; Glew, D. N. Trans. Faraday Soc. 1966, 62, 539. https://doi.org/10.1039/tf9666200539
  20. Park, S.; Kim, S.-J. Bull. Korean Chem. Soc. 2011, 32, 2125. https://doi.org/10.5012/bkcs.2011.32.6.2125

피인용 문헌

  1. Roles of His101 in DNA-Binding Domain of Human Heat Shock Factor 1 Under Acid pH Environment vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4201