DOI QR코드

DOI QR Code

Adsorption of O Atom on Cr (100), (110), (111), and (211) Surfaces: An 5-Parameter Morse Potential Method Study

  • Han, Ling-Li (Department of Chemistry and Chemical Engineering, Jining University) ;
  • Liu, Tao (Department of Chemistry and Chemical Engineering, Jining University)
  • Received : 2011.07.18
  • Accepted : 2012.03.02
  • Published : 2012.06.20

Abstract

The 5-parameter Morse potential (5-MP) method for the interaction between O atom and Cr surfaces is constructed in the present work. The adsorption of O on Cr (100), (110), (111), and (211) surfaces are studied with 5-MP in detail. The fourfold hollow site of the Cr (100) surface is favored for O atom. On Cr (110), quasithreefold site is favored with the parallel frequencies (the frequencies of O atom paralleling the metal surface) of 342 and 538 $cm^{-1}$, and perpendicular frequency (the frequency of O atom perpendicular to the metal surface) at 526 $cm^{-1}$. On Cr (111), the most favored mode for O atom is found to be the quasi-threefold site with the perpendicular frequency at 553 $cm^{-1}$ and the parallel frequencies at 253 and 399 $cm^{-1}$. According to our calculation results, we speculate the most preferred mode for O adsorption on Cr (211) surface is the quasithreefold site with the perpendicular frequency at 583 $cm^{-1}$ and the parallel frequencies at 449 and 185 $cm^{-1}$.

Keywords

References

  1. Shinn, N. D.; Madey, T. E. Surf. Sci. 1986, 176, 635. https://doi.org/10.1016/0039-6028(86)90062-2
  2. Baca, A. G.; Klebanoff, L. E.; Schulz, M. A.; Paparazzo, E.; Shirley, D. A. Surf. Sci. 1986, 171, 255. https://doi.org/10.1016/0039-6028(86)91079-4
  3. Kaye, S. S.; Choi, H. J.; Long, J. R. J. Am.Chem. Soc. 2008, 130, 16921. https://doi.org/10.1021/ja803926y
  4. Shinn, N. D.; Madey, T. E. Surf. Sci. 1986, 173, 379. https://doi.org/10.1016/0039-6028(86)90197-4
  5. Kennett, H. M.; Lee, A. E. Surf. Sci. 1972, 33, 377. https://doi.org/10.1016/0039-6028(72)90215-4
  6. Shinn, N. D.; Madey, T. E. J. Phys. Chem. 1985, 83, 5928. https://doi.org/10.1063/1.449625
  7. Ekelund, S.; Leygraf, C. Surf. Sci. 1973, 40, 179. https://doi.org/10.1016/0039-6028(73)90061-7
  8. Shinn, N. D.; Madey, T. E. Instr. Methods B 1986, 13, 537. https://doi.org/10.1016/0168-583X(86)90561-6
  9. Baca, A. G.; Klebanoff, L. E.; Schulz, M. A.; Paparazzo, E.; Shirley, D. A. Surf. Sci. 1986, 173, 215. https://doi.org/10.1016/0039-6028(86)90117-2
  10. Kroger, J.; Lehwald, S.; Ibach, H. Phys. Rev. B 1998, 58, 1578. https://doi.org/10.1103/PhysRevB.58.1578
  11. Queeney, K. T.; Chen, D. A.; Friend, C. M. J. Am. Chem. Soc. 1997, 119, 6945. https://doi.org/10.1021/ja9707771
  12. Nart, F. C.; Kelling, S.; Friend, C. M. J. Phys. Chem. B 2000, 104, 3212. https://doi.org/10.1021/jp993479u
  13. Dinardo, N. J.; Blanchet, G. B.; Plummer, E. W. Surf. Sci. 1966, 4, 452. https://doi.org/10.1016/0039-6028(66)90019-7
  14. Elbe, A.; Meister, G.; Goldmann, A. Surf. Sci. 1997, 371, 438. https://doi.org/10.1016/S0039-6028(96)10096-0
  15. Wu, P. K.; Perepezko, J. H.; Mckinney, J. T.; Lagally, M. G. Phys. Rev. Lett. 1983, 51, 1577. https://doi.org/10.1103/PhysRevLett.51.1577
  16. Balbuena, P. B.; Altomare, D.; Agapito, L.; Seminario, J. M. J. Phys. Chem. B 2003, 107, 13671. https://doi.org/10.1021/jp035729j
  17. Hideli, N.; Pukird, S.; Saitch, T.; Kakizaki, A.; Ishii, T. J. Elect. Spect. Relat. Pheno. 2005, 144-147, 409. https://doi.org/10.1016/j.elspec.2005.01.030
  18. Eichler, A.; Hafner, J. Phys. Rev. B 2000, 62, 5163. https://doi.org/10.1103/PhysRevB.62.5163
  19. Diao, Z. Y.; Han, L. L.; Wang, Z. X. Acta Chim. Sinica 2004, 62, 1397.
  20. Han, L. L.; Liu, Ch. L.; Wang, Z. X.; Diao, Z. Y. Chin. J. Cata. 2005, 26, 707.
  21. Diao, Z. Y.; Yu, Sh. Q.; Wang, Z. X. Acta Chim. Sinica 2004, 62, 2136.
  22. Wang, Z. X.; Hao, C.; Zhang, J. S.; Han, A. S.; Chen, Z. Q. Acta Chim. Sinica 1993, 51, 417.
  23. Zhang, J.; Diao, Z. Y.; Wang, Z. X.; Feng, H.; Hao, C. Acta Chim. Sinica 2005, 63, 1276.
  24. Feng, H.; Diao, Z. Y.; Wang, Z. X.; Zhang, J. Chem. J. Chin. Uni. 2006, 27, 297.
  25. Han, L. L.; Diao, Z. Y.; Wang, Z. X.; Zhang, X. M. J. Phys. Chem. B 2004, 108, 20160. https://doi.org/10.1021/jp047909e
  26. Wang, Z. X.; Tian, F. H. J. Phys. Chem. B 2003, 25, 6153.
  27. Diao, Z. Y.; Zhang, Y.; Zhang, X. N.; Wang, Z. X.; Wang, Zh. N. Chem. Res. Chin. Uni. 2009, 25, 98.
  28. Dinardo, N. J.; Blanchet, G. B.; Plummer, E. W. Surf. Sci. 1984, 140, L229.
  29. Van Hove, M. A.; Tong, S. Y. Phys. Rev. Lett. 1975, 35, 1092. https://doi.org/10.1103/PhysRevLett.35.1092
  30. Stefanov, P. K.; Marinova, Ts. S. Surf. Sci. 1988, 200, 26. https://doi.org/10.1016/0039-6028(88)90430-X
  31. Sasaki, T.; Goto, Y.; Tero, R.; Fukui, K.; Iwasawa, Y. Surf. Sci. 2002, 502-503, 136. https://doi.org/10.1016/S0039-6028(01)01919-7
  32. Wendelken, J. F. J. Vac. Sci. Technol. A 1988, 6, 662. https://doi.org/10.1116/1.575148

Cited by

  1. Oxygen adsorption on (100) surfaces in Fe-Cr alloys vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-85243-0