DOI QR코드

DOI QR Code

Molecular Imaging of Arthritis in the Angiogenic Vasculature Using A 123I-Vascular Endothelial Growth Factor Receptor Antibody

  • Kim, Sung-Min (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Choi, Na-Eun (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Song, Young-Kyu (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Cho, Gyung-Goo (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Bang, Jeong-Kyu (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Kim, Sang-Mi (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Sang-Hoon (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Ryu, Eun-Kyoung (Division of Magnetic Resonance Research, Korea Basic Science Institute)
  • Received : 2012.01.26
  • Accepted : 2012.03.05
  • Published : 2012.06.20

Abstract

Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) have been implicated in the pathogenesis of rheumatoid arthritis, which is angiogenesis dependent. Antibody-based molecular imaging improves targeting, and antibody radiolabeling is useful for monitoring biological events $in$ $vivo$ $via$ PET or SPECT. We investigated the potential of molecular imaging to diagnose arthritis with VEGFR-2 $in$ $vivo$. The $^{123}I$-VEGFR-2 antibody was prepared by the iodogen tube method. The radioligand was injected into arthritic mice, and micro SPECT/CT was performed. The arthritic mice were examined by 4.7-T MRI and immunohistochemistry. The $^{123}I$-VEGFR-2 antibody showed high uptake in the arthritic region at 1 h postinjection on SPECT/CT but no uptake in the control animals after radioligand injection. In MR images, the arthritic tissue of the mice was correlated with regions labeled by the $^{123}I$-VEGFR-2 antibody. Immunohistochemical localization showed markedly increased expression of VEGFR-2 in the endothelial cells, fibroblasts, and macrophages of the arthritic mice.

Keywords

References

  1. Walsh, D. A. Rheumatology (Oxford) 1999, 38, 103. https://doi.org/10.1093/rheumatology/38.2.103
  2. Mustonen, T.; Alitalo, K. J. Cell Biol. 1995, 129, 895. https://doi.org/10.1083/jcb.129.4.895
  3. Ferrara, N.; Davis-Smyth, T. Endocr. Rev. 1997, 18, 4. https://doi.org/10.1210/er.18.1.4
  4. Jakeman, L. B.; Winer, J.; Bennett, G. L.; Altar, C.A.; Ferrara, N. J. Clin. Invest. 1992, 89, 244. https://doi.org/10.1172/JCI115568
  5. Yamane, A.; Seetharam, L.; Yamaguchi, S.; Gotoh, N.; Takahashi, T.; Neufeld, G.; Shibuya, M. Oncogene 1994, 9, 2683.
  6. Shibuya, M. Cell Struct. Funct. 2001, 26, 25. https://doi.org/10.1247/csf.26.25
  7. Luo, J. C.; Toyoda, M.; Shibuya, M. Cancer Res. 1998, 58, 2594.
  8. Carmeliet, P.; Moons, L.; Luttun, A.; Vincenti, V.; Compernolle, V.; De Mol, M.; Wu, Y.; Bono, F.; Devy, L.; Beck, H.; Scholz, D.; Acker, T.; DiPalma, T.; Dewerchin, M.; Noel, A.; Stalmans, I.; Barra, A.; Blacher, S.; Vandendriessche, T.; Ponten, A.; Eriksson, U.; Plate, K. H.; Foidart, J. M.; Schaper, W.; Charnock-Jones, D. S.; Hicklin, D. J.; Herbert, J. M.; Collen, D.; Persico, M. G. Nat. Med. 2001, 7, 575. https://doi.org/10.1038/87904
  9. Ferrara, N.; Gerber, H. P.; LeCouter, J. Nat. Med. 2003, 9, 669. https://doi.org/10.1038/nm0603-669
  10. Li, S.; Peck-Radosavljevic, M.; Kienast, O.; Preitfellner, J.; Havlik, E.; Schima, W.; Traub-Weidinger, T.; Graf, S.; Beheshti, M.; Schmid, M.; Angelberger, P.; Dudczak, R. Q. J. Nucl. Med. Mol. Imaging 2004, 48, 198.
  11. Lu, E.; Wagner, W. R.; Schellenberger, U.; Abraham, J. A.; Klibanov, A. L.; Woulfe, S. R.; Csikari, M. M.; Fischer, D.; Schreiner, G. F.; Brandenburger, G. H.;. Villanueva, F. S. Circulation 2003, 108, 97. https://doi.org/10.1161/01.CIR.0000079100.38176.83
  12. Backer, M. V.; Levashova, Z.; Patel, V.; Jehning, B. T.; Claffey, K.; Blankenberg, F. G.; Backer, J. M. Nat. Med. 2007, 13, 504. https://doi.org/10.1038/nm1522
  13. Murakami, M.; Iwai, S.; Hiratsuka, S.; Yamauchi, M.; Nakamura, K.; Iwakura, Y.; Shibuya, M. Blood. 2006, 108, 1849. https://doi.org/10.1182/blood-2006-04-016030
  14. Kim, W. U.; Kang, S. S.; Yoo, S. A.; Hong, K. H.; Bae, D. G.; Lee, M. S.; Hong, S. W.; Chae, C. B.; Cho, C. S. J. Immunol. 2006, 177, 5727. https://doi.org/10.4049/jimmunol.177.8.5727
  15. Hoeben, A.; Landuyt, B.; Highley, M. S.; Wildiers, H.; Van Oosterom, A. T.; De Bruijn, E. A. Pharmacol. Rev. 2004, 56, 549. https://doi.org/10.1124/pr.56.4.3
  16. Donohoe, K. J.; Henkin, R. E.; Royal, H. D.; Brown, M. L.; Collier, B. D.; O'Mara, R. E.; Carretta, R. F. J. Nucl. Med. 1996, 37, 1903.
  17. Backhaus, M.; Burmester, G. R.; Sandrock, D.; Loreck, D.; Hess, D.; Scholz, A.; Blind, S.; Hamm, B.; Bollow, M. Ann. Rheum. Dis. 2002, 61, 895. https://doi.org/10.1136/ard.61.10.895
  18. Palmer, W. E.; Rosenthal, D. I.; Schoenberg, O. I.; Fischman, A. J.; Simon, L. S.; Rubin, R. H.; Polisson, R. P. Radiology 1995, 196, 647. https://doi.org/10.1148/radiology.196.3.7644624
  19. Beckers, C.; Ribbens, C.; Andre, B.; Marcelis, S.; Kaye, O.; Mathy, L.; Kaiser, M. J.; Hustinx, R.; Foidart, J.; Malaise, M. G. J. Nucl. Med. 2004, 45, 956.
  20. Brenner, W. J. Nucl. Med. 2004, 45, 927.

Cited by

  1. 125I-Tetrazines and Inverse-Electron-Demand Diels–Alder Chemistry: A Convenient Radioiodination Strategy for Biomolecule Labeling, Screening, and Biodistribution Studies vol.27, pp.1, 2012, https://doi.org/10.1021/acs.bioconjchem.5b00609