DOI QR코드

DOI QR Code

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells

  • In, Su-Il (Department of Chemistry and Department of Electrical Engineering, the Pennsylvania State University, State College) ;
  • Almtoft, Klaus P. (Danish Technological Institute, Tribology Centre) ;
  • Lee, Hyeon-Seok (Department of Chemistry and Department of Electrical Engineering, the Pennsylvania State University, State College) ;
  • Andersen, Inge H. (Danish Technological Institute, Tribology Centre) ;
  • Qin, Dongdong (Department of Chemistry and Department of Electrical Engineering, the Pennsylvania State University, State College) ;
  • Bao, Ningzhong (State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology) ;
  • Grimes, C.A. (Flux Photon Corporation)
  • Received : 2011.12.14
  • Accepted : 2012.03.19
  • Published : 2012.06.20

Abstract

We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Bao, N.; Feng, X.; Grimes, C. A. J. Nanotechnol. 2012, doi: 10.1155/2012/645931.
  3. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215. https://doi.org/10.1021/nl052099j
  4. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69. https://doi.org/10.1021/nl062000o
  5. Varghese, O. K.; Paulose, M.; Grimes, C. A. Nature Nanotechnol. 2009, 4, 592. https://doi.org/10.1038/nnano.2009.226
  6. Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Lett. 2008, 8, 3781. https://doi.org/10.1021/nl802096a
  7. Liu, B.; Aydil, E. S. J. American Chem. Soc. 2009, 131, 3985. https://doi.org/10.1021/ja8078972
  8. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331. https://doi.org/10.1557/JMR.2001.0457
  9. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179. https://doi.org/10.1021/jp064020k
  10. Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235. https://doi.org/10.1021/jp070273h
  11. Yoriya, S.; Mor, G. K.; Sharma, S.; Grimes, C. A. J. Mater. Chem. 2008, 18, 3332. https://doi.org/10.1039/b802463d
  12. Yoriya, S.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 13770. https://doi.org/10.1021/jp074655z
  13. Shankar, K.; Mor, G. K.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 21. https://doi.org/10.1021/jp066352v
  14. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, Article No. 065707.
  15. Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156. https://doi.org/10.1557/JMR.2003.0022
  16. Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. https://doi.org/10.1002/adma.200602903
  17. Thornton, J. A. J. Vac. Sci. Tech. 1974, 11, 666. https://doi.org/10.1116/1.1312732
  18. Thornton, J. A. J. Vac. Sci. Tech. 1975, 12, 830. https://doi.org/10.1116/1.568682

Cited by

  1. A facile solution route to deposit TiO2 nanowire arrays on arbitrary substrates vol.6, pp.6, 2014, https://doi.org/10.1039/c3nr05786k
  2. nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells vol.7, pp.2, 2014, https://doi.org/10.1039/C3EE42167H
  3. nanorods vol.5, pp.73, 2015, https://doi.org/10.1039/C5RA07525D
  4. Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells vol.8, pp.21, 2016, https://doi.org/10.1021/acsami.6b01508
  5. Nanowires and Its Applications in Quantum Dot-Sensitized Solar Cells vol.121, pp.39, 2017, https://doi.org/10.1021/acs.jpcc.7b07795
  6. Seed-assisted hydrothermal synthesis of aligned single-crystalline anatase nanorods on FTO: synthesis and application vol.29, pp.5, 2014, https://doi.org/10.1088/0268-1242/29/5/055006
  7. Hydrothermal Fabrication of Hierarchically Anatase TiO 2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells vol.3, pp.None, 2012, https://doi.org/10.1038/srep01352
  8. Deposition of porous titanium oxide thin films as anode material for dye sensitized solar cells vol.114, pp.None, 2015, https://doi.org/10.1016/j.vacuum.2014.10.016
  9. Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle vol.122, pp.36, 2012, https://doi.org/10.1021/acs.jpcc.8b07192
  10. C-14 powered dye-sensitized betavoltaic cells vol.56, pp.52, 2012, https://doi.org/10.1039/d0cc02046j