DOI QR코드

DOI QR Code

Morphological variability of intertidal Eisenia arborea (Laminariales, Ochrophyta) at Punta Eugenia, Baja California Sur

  • Parada, Gloria M. (Casilla 102) ;
  • Riosmena-Rodriguez, Rafael (Programa de Investigacion en Botanica Marina, Universidad Autonoma de Baja California Sur) ;
  • Martinez, Enrique A. (Centro de Estudios Avanzados en Zonas Aridas (CEAZA) Universidad de La Serena, Raul Bitran s/n, Colina El Pino, La Serena, Chile and PhD Program on Applied Biology and Ecology, Facultad de Ciencias del Mar, Universidad Catolica del Norte) ;
  • Hernandez-Carmona, Gustavo (Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional s/n)
  • Received : 2011.12.17
  • Accepted : 2012.05.06
  • Published : 2012.06.15

Abstract

Water motion is one of the main drivers in morphological variability in species within de order Laminariales, and most of our current knowledge is based on subtidal populations. $Eisenia$ $arborea$ is a dominant kelp species in the North Pacific, widely distributed along the Baja California Peninsula from mid intertidal down to subtidal areas. This species presents great variability in the intertidal zone but it has not been yet evaluated such variability according to wave exposure. The present work also identifies the spatial / temporal variation, particularly respect to the presence of stipes without medulla (hollow stipes) a feature common among other brown seaweeds. We evaluated the effects of wave action in morphological variation of intertidal $Eisenia$ $arborea$ (Laminariales, Ochrophyta) at Punta Eugenia. The spatial and temporal variation sampling was surveyed between February, May, July, and August 2004 in the intertidal of Punta Eugenia, Baja California Sur. Our results have shown that exposed sites correlate with increased length and width of stipes as compared to more protected sites. Hollow stipes frequency changed more in association with temporal variation than with spatial heterogeneity suggesting nutrient limitation for thalli development. Our results suggest that $Eisenia$ $arborea$ compensate by morphological modifications the stress of living in the intertidal zone by showing larger stipes. Hollow stipes might be are also a mechanical adaptation to increase survival in high energy environments.

Keywords

References

  1. Blanchette, C. A., Miner, B. G. & Gaines, S. D. 2002. Geographic variability in form, size and survival of Egregia menziesii around Point Conception, California. Mar. Ecol. Prog. Ser. 239:69-82. https://doi.org/10.3354/meps239069
  2. Cervantes-Duarte, R., Aguiniga-Garcia, S. & Hernandez-Trujillo, S. 1993. Condiciones de surgencia asociadas a la distribucion de zooplancton en San Hipolito, B.C.S. Cienc. Mar. 19:117-135. https://doi.org/10.7773/cm.v19i1.917
  3. Correa, J. A., Lagos, N. A., Medina, M. H., Castilla, J. C., Cerda, M., Ramirez, M., Martinez, E., Faugeron, S., Andrade, S., Pinto, R. & Contreras, L. 2006. Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal habitats of northern Chile: experimental, restoration and management applications. J. Exp. Mar. Biol. Ecol. 335:13-18. https://doi.org/10.1016/j.jembe.2006.02.010
  4. Demes, K. W., Graham, M. H. & Suskiewicz, T. S. 2009. Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: the giant kelp Macrocystis (Laminariales, Phaeophyceae), is a monospecific genus. J. Phycol. 45:1266-1269. https://doi.org/10.1111/j.1529-8817.2009.00752.x
  5. Druehl, L. D. & Kemp, L. 1982. Morphological and growth responses of geographically isolated Macrocystis integrifolia populations when grown in a common environment. Can. J. Bot. 60:1409-1413. https://doi.org/10.1139/b82-179
  6. Edwards, M. S. & Estes, J. A. 2006. Catastrophe, recovery and range limitation in NE Pacific kelp forests: a large-scale perspective. Mar. Ecol. Prog. Ser. 320:79-87. https://doi.org/10.3354/meps320079
  7. Edwards, M. S. & Hernández-Carmona, G. 2005. Delayed recovery of giant kelp near its southern range limit in the North Pacific following El Nino. Mar. Biol. 147:273-279. https://doi.org/10.1007/s00227-004-1548-7
  8. Gerard, V. A. 1997. The role of nitrogen nutrition in high-temperature tolerance of the kelp, Laminaria saccharina (Chromophyta). J. Phycol. 33:800-810. https://doi.org/10.1111/j.0022-3646.1997.00800.x
  9. Gerard, V. A. & Mann, K. H. 1979. Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15:33-41. https://doi.org/10.1111/j.0022-3646.1979.00033.x
  10. Hernandez-Carmona, G., Robledo, D. & Serviere-Zaragoza, E. 2001. Effect of nutrient availability on Macrocystis pyrifera recruitment and survival near its southern limit off Baja California. Bot. Mar. 44:221-229.
  11. Hurd, C. L. 2000. Water motion, marine macroalgal physiology and production. J. Phycol. 36:453-472. https://doi.org/10.1046/j.1529-8817.2000.99139.x
  12. Kawamata, S. 2001. Adaptive mechanical tolerance and dislodgement velocity of the kelp Laminaria japonica in wave-induced water motion. Mar. Ecol. Progr. Ser. 211:89-104. https://doi.org/10.3354/meps211089
  13. Klinger, T. & De Wreede, R. E. 1988. Stipe rings, age, and size in populations of Laminaria setchellii Silva (Laminariales, Phaeophyta) in British Columbia, Canada. Phycologia 27:234-240. https://doi.org/10.2216/i0031-8884-27-2-234.1
  14. Koehl, M. A. R. 1986. Seaweeds in moving water: form and mechanical function. In Givnish, T. J. (Ed.) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, pp. 603-634.
  15. Koehl, M. A. R. & Alberte, R. S. 1988. Flow, flapping, and photosynthesis of Nereocystis luetkeana: a functional comparison of undulate and flat blade morphologies. Mar. Biol. 99:435-444. https://doi.org/10.1007/BF02112137
  16. Kraemer, G. P. & Chapman, D. J. 1991a. Biomechanics and alginic acid composition during hydrodynamic adaptation by Egregia menziesii (Phaeophyta) juveniles. J. Phycol. 27:47-53. https://doi.org/10.1111/j.0022-3646.1991.00047.x
  17. Kraemer, G. P. & Chapman, D. J. 1991b. Effects of tensile force and nutrient availability on carbon uptake and cell wall synthesis in blades of juvenile Egregia menziesii (Turn.) Aresch. (Phaeophyta). J. Exp. Mar. Biol. Ecol. 149:267-277. https://doi.org/10.1016/0022-0981(91)90049-3
  18. Matson, P. G. & Edwards, M. S. 2006. Latitudinal variation in stipe hollowing in Eisenia arborea (Phaeophyceae, Laminariales). Phycologia 45:343-348. https://doi.org/10.2216/05-41.1
  19. Matson, P. G. & Edwards, M. S. 2007. Effects of ocean temperature on the southern range limits of two understory kelps, Pterygophora californica and Eisenia arborea, at multiple life-stages. Mar. Biol. 151:1941-1949. https://doi.org/10.1007/s00227-007-0630-3
  20. McConnico, L. A. & Foster, M. S. 2005. Population biology of the intertidal kelp, Alaria marginata Postels and Ruprecht: a non-fugitive annual. J. Exp. Mar. Biol. Ecol. 324:61-75. https://doi.org/10.1016/j.jembe.2005.04.006
  21. Miller, K. A., Olsen, J. L. & Stam, W. T. 2000. Genetic divergence correlates with morphological and ecological subdivision in the deep-water elk kelp, Pelagophycus porra (Phaeophyceae). J. Phycol. 36:862-870. https://doi.org/10.1046/j.1529-8817.2000.99233.x
  22. Parada, G. M. 2005. Dinamica y variacion morfologica de una poblacion intermareal de Eisenia arborea (Laminariales) en Punta Eugenia, B.C.S., Mexico. M.Sc. thesis, Universidad de Baja California Sur, Baja California Sur, Mexico, 75 pp.
  23. Parada, G. M., Riosmena-Rodriguez, R., Martinez, E. A. & Hernandez-Carmona, G. 2009. Dinamica poblacional de Eisenia arborea Areschoug (Laminariales: Ochrophyta) en el intermareal de Punta Eugenia, Baja California Sur, Mexico. Cienc. Mar. 13:3-13.
  24. Roberson, L. M. & Coyer, J. A. 2004. Variation in blade morphology of the kelp Eisenia arborea: incipient speciation due to local water motion? Mar. Ecol. Prog. Ser. 282:115-128. https://doi.org/10.3354/meps282115
  25. Tellier, F., Meynard, A. P., Correa, J. A., Faugeron, S. & Valero, M. 2009. Phylogeographic analyses of the $30^{\circ}S$ south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry? Mol. Phylogenet. Evol. 53:679-693. https://doi.org/10.1016/j.ympev.2009.07.030
  26. Wernberg, T., Coleman, M., Fairhead, A., Miller, S. & Thomsen, M. 2003. Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 143:47-55. https://doi.org/10.1007/s00227-003-1069-9
  27. Wing, S. R., Leichter, J. J., Perrin, C., Rutger, S. M., Bowman, M. H. & Cornelisen, C. D. 2007. Topographic and wave exposure influence morphology and ecophysiology of Ecklonia radiata (C. Agardh 1817) in Fiorland, New Zealand. Limnol. Oceanogr. 52:1853-1864. https://doi.org/10.4319/lo.2007.52.5.1853
  28. Zar, J. H. 1996. Biostatistical analysis. 3rd ed. Prentice-Hall, Inc., Upper Saddle River, NJ, 662 pp.
  29. Zimmerman, R. C. & Kremer, J. N. 1984. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42:591-604. https://doi.org/10.1357/002224084788506031
  30. Zimmerman, R. C. & Kremer, J. N. 1986. In situ growth and chemical composition of the giant kelp, Macrocystis pyrifera: response to temporal changes in ambient nutrient availability. Mar. Ecol. Prog. Ser. 27:277-285. https://doi.org/10.3354/meps027277

Cited by

  1. A phylogeographic investigation of the kelp genus Laminaria (Laminariales, Phaeophyceae), with emphasis on the South Atlantic Ocean vol.53, pp.4, 2017, https://doi.org/10.1111/jpy.12544