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Abstract: A new data-driven method for the design of a blind modulation frequency filter that 
suppresses the slow-varying noise components is proposed. The proposed method is based on the 
temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-
utterance basis. Although the conventional modulation frequency filtering approaches the same 
form regardless of the task and environment conditions, the proposed method can provide an 
adaptive modulation frequency filter that outperforms conventional methods for each utterance. In 
addition, the method ultimately performs channel normalization in a feature domain with 
applications to log-spectral parameters. The performance was evaluated by speaker-independent 
isolated-word recognition experiments under additive noise environments. The proposed method 
achieved outstanding improvement for speech recognition in environments with significant noise 
and was also effective in a range of feature representations.    
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1. Introduction 

The performance of speech recognition systems has 
improved dramatically in recent years. On the other hand, 
they degrade severely in real-world applications, resulting 
in a mismatch between the training and testing conditions. 
The major causes of this mismatch are environmental 
conditions, such as additive background noise and 
convolutional channel distortion. The control of different 
acoustic environments is difficult. Moreover, even 
identical training and testing environments cannot 
guarantee high performance when the signal-to-noise ratio 
(SNR) is less than 10 dB. In addition, the background 
noise can augment the effect of the speaker variability, 
which is another reason for the performance degradation. 
To solve this problem, speech recognition methods under 
adverse conditions have been studied widely, and can be 
classified into the following three categories. First, the 
inherently robust feature parameters of the speech signal 
were used, such as auditory models and modulation 

frequency filtering approaches. Next, a data compensation 
method is used to recover the clean speech from the 
corrupted speech in the feature domain. Unstructured 
approaches, such as probabilistic optimal filtering (POF) 
[1], stereo-based piecewise linear compensation for 
environments (SPLICE) [2, 3] and cepstral vector 
normalization [4], and structured methods, such as 
codebook-dependent cepstral normalization (CDCN) [5], 
vector Taylor series (VTS) [6], and switching linear 
dynamic model (SLDM) [7, 8], belong to this category. 
Finally, model compensation techniques adapt model 
parameters of recognition under consideration of the noise 
effect [9, 10]. 

In the above methods, one notable technique is the 
modulation frequency filtering approach, which reduces 
the slow-varying noise components in a feature parameter 
domain. Modulation frequency filtering approaches do not 
provide spectral parameters that augment the synergy with 
delta ones. On the other hand, in small vocabulary 
isolated-word recognition, they are comparable to 
unfiltered features with a delta parameter for clean speech, 
and outperform those of noisy speech [11]. Mokbel et al. 
proposed a cepstral mean subtraction (CMS) method to 
reduce the effects of variations in the telephone line 
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conditions [12], and Hermansky and Morgan used relative 
spectral (RASTA) processing to simultaneously cope with 
additive and convolutional noises [13, 14]. Hanson also 
tried to apply the modulation frequency filtering approach 
for recognition of Lombard speech [15]. The modulation 
frequency filtering approaches do not require prior 
knowledge of the testing environments, and are more 
attractive than compensation methods in real system 
implementation. Using modulation frequency filtering 
methods, one can suppress the slowly varying components 
of the frame sequence corrupted by noise. This effect 
produces a local decorrelation of the frame sequence [11, 
16] and provides alternative modeling of some temporal 
properties of human auditory processing [13]. The 
principle of the RASTA method originates from the human 
auditory perception that represents the insensitivity of 
human hearing to slowly varying auditory stimuli. In 
addition, the particularly interesting point of modulation 
frequency filtering approaches is that they emphasize 
noise-immune parts of the speech signal as in human 
hearing perception. Although modulation frequency 
filtering approaches are attractive for noisy speech 
recognition, the conventional methods have some 
problems. CMS requires a long-term average calculated 
from the entire cepstrum vector sequence. RASTA-like 
filters might be specific to a given task, and use the same 
form regardless of the noise condition [13, 17]. The data-
driven design of a RASTA filter was introduced to 
optimize to a new task but it needs to be re-designed for a 
new environment [18-20]. 

This paper proposes a new data-driven method to 
design modulation frequency filters for noise-robust 
feature extraction. Based on a decorrelation criterion, the 
developed method produces an adaptive high-pass filter in 
the modulation frequency for each utterance under a range 
of environments. This is a prime cause of the better 
performance of the proposed method over existing 
methods. The proposed method was implemented not as a 
transformation but as a finite impulse response (FIR) filter 
to preserve the temporal homogeneity among the frames of 
a given utterance. Avendano et al. also presented linear 
discriminant analysis (LDA) to feature the time trajectories 
using FIR filtering for consistency with the ad hoc 
designed RASTA filter [18]. The proposed method was 
performed on an utterance-by-utterance basis, and is based 
on the information-maximization approach used in a blind 
signal separation [21, 22]. Speaker-independent isolated-
word recognition experiments were performed under a 
range of additive noise conditions to evaluate the 
performance of the proposed method. The simulation 
showed that the proposed method outperforms other 
methods under severe noisy conditions. 

The organization of the paper is as follows. Section 2 
introduces the basic principle of the information-
maximization approach. Section 3 reports the design of a 
blind decorrelation filter using this principle. Section 4 
contains the experimental results for noisy speech 
recognition, and Section 5 presents the results applying the 
proposed method to various feature representations. 
Section 6 concludes the paper. 

 

2. Information-Maximization Approach 

Most channel distortions or additive noises can 
manifest as a slow-varying perturbation introducing 
temporal dependencies in the feature vector domain. 
Therefore, by decorrelating the feature vector sequence, 
one can remove effectively the noise components from 
feature representation. This is a basic principle of 
modulation frequency filtering approaches. The blind 
decorrelation to remove the statistical dependencies is 
performed by maximizing the joint entropy of the feature 
vector sequence. Although the correct measure of 
statistical dependency is the mutual information, 
maximizing the joint entropy is computationally more 
efficient than minimizing the mutual information [23]. In 
addition, for super-Gaussian signals, such as speech 
signals, the entropy maximization can always minimize the 
mutual information [21]. 

When an input sequence U  is passed through an 
invertible monotonic function, ()g , the probability density 
function (PDF) ( )f Z  of an output sequence Z  is 
represented as [24] 

 

  

(1)

  
and the joint entropy ( )H Z  is defined as 
 
  (2) 

                                                      
From (2), ( )H Z  is maximized when ( )f Z  has a 

uniform distribution, i.e. '()g  and ( )f U  are matched. 
This is the principle of entropy maximization, and the 
blind decorrelation using this principle might be 
implemented, as shown in Fig. 1. In Fig. 1, ()g  is given as 
a basic form of the cumulative density function of the 
input feature sequence, and the linear transform W  is 
learnt to match the PDF of sequence U  to '()g . This 
process can be considered unsupervised learning. The non-
linear function ()g  can provide all the higher-order 
moments besides the second-order moment of simple 
decorrelation filtering [11], and its invertible property 
enables the maximization of ( )H U  from the maximization 
of ( )H Z . Therefore, the decorrelated frame sequence *U  
can be obtained from a linear transform, *W , which 
maximizes ( )H Z . 

 

 

Fig. 1. Blind decorrelation procedure based on the 
information-maximization approach. 
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3. Blind Decorrelation Processing 

3.1 Linearization of Environmental Model 
The environmental model for noisy speech can be 

represented as 
 

  (3) 
                                                               

where 2( ), ( ) , ( )X H Nω ω ω  and ( )Y ω  denote the power 
spectrum of clean speech, channel distortion, additive 
noise and noisy speech, respectively. For a common 
feature representation, taking the logarithm operator on (3) 
results in 
 

 
  (4) 

 
and defining , ,l l lx q n  and ly  instead of log ( ),X ω  
log ( ), log ( )H Nω ω  and log ( )Y ω  derives the equation, 

 

  (5) 
                              
where subscript l  denotes the log-domain. From (5), the 
noisy feature vector y  is related to the clean feature vector 
x , the additive noise, n , and the channel distortion, q , by 

 
  (6)                                                                                  

 
and the function ( , , )f x n q  might be approximated 
linearly in a piecewise manner, as in a truncated vector 
Taylor series expansion [6]. Therefore, the channel 
distortion and additive noise can be represented as an 
additive slow-varying term in the log-scaled feature 
domain and be removed fairly well by linear high-pass 
filtering, such as modulation frequency filtering methods. 

3.2 Design of Decorrelation filter 
In this Section a procedure was derived to design the 

filter performing the blind decorrelation in the feature 
domain. The filter is a type of unsupervised adaptive high-
pass filter in the modulation frequency, and is 
implemented as an FIR form by the information-
maximization approach for each utterance. Although an 
FIR filter requires more coefficients than an infinite 
impulse response (IIR) filter, the derivation procedure for 
the coefficients of the FIR filter is much simpler. 

In Fig. 1, after FIR filtering with the noisy feature 
vector sequence, , ( )Y U t  and ( )Z t  can be expressed as 

 

  
(7)

 
  (8) 

where t  denotes a frame index, and kω  and K  denote the 
coefficient and order of the filter W , respectively. To 
apply information-maximization theory, the PDF ( )f Z  is 
expressed as (1), and the joint entropy ( )H Z  is given by 
 

  
(9)

 
                                                      

where E[ ]⋅  denotes the expectation operation. Because the 
second term is not affected by a change in kω , the first 
term was only considered to maximize ( )H Z  with respect 
to kω . 

By taking the gradient of the first term, the gradient 
descent rule for kω  can be derived as 

 

  
(10)

 
                                                          

where ( )Z' t  represents the partial derivative of ( )Z t  with 
respect to ( )Y t  calculated as 
 

 
 (11) 

                                                                                        
and its gradient with respect to kω  is obtained as follows: 
 

  
(12)

 

  
(13)

 
                                                                
Following the steepest descent update rule, kω  is 

updated iteratively by 
 

  (14) 
                                                                

where j  denotes an iteration index and η  is a learning 

rate, respectively. The average kωΔ  was used to apply the 
same filter to all the dimensions of feature vector despite 
slight different aspects. 

Using these derivations for obtaining a blind 
decorrelation, the adaptive modulation frequency filter and 
the consequential robust feature extraction  were achieved 
as follows: 
• step 1: Obtain an initial estimate for kω  and initialize 

sequences ( )U t  and ( )Z t  using (7) and (8). 
• step 2: With (10), compute the gradient descent rule 

for kω . 
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•  step 3: Update the filter coefficients by (14), and 
compute the sequences ( )U t  and ( )Z t  using them. 
• step 4: If the convergence of filter coefficients is not 

satisfied, go to step 2. 
•  step 5: Extract the noise-removed feature sequence 

( )U t  based on (7). 
Function ( ( ))g' U t  was defined to obtain the desired 

filter. According to the principle of entropy maximization, 
( ( ))g' U t  should be matched with the PDF of the feature 

sequence, ( )f U . Assume that in a log-spectral domain, 
the clean speech and noise signals follow a Gaussian 
distribution and that the channel distortion is known. By 
(4), the resulting PDF ( )f Y  is clearly non-Gaussian, and 
linearly transformed ( )f U  produces the same results. The 
PDF sometimes has a bimodal form, and its variance is 
decreased [25]. On the other hand, a Gaussian assumption 
can still capture a significant part of noisy speech statistics, 
and some results show how this assumption is effective 
[25]. This paper considers the activation function ( ( ))g' U t  
of the following two cases. 

3.2.1 Gaussian distribution 
The function ( ( ))g' U t  was assumed to be 
                                                                          

  (15) 

  (16) 
                                                              
Therefore, from (10), the learning rules for kω  are 

given by 
 

  
(17)

 
  (18) 

                                                       
The filter coefficients were obtained by (14), and the 

noise-removed feature vector sequence U  was obtained 
from (7) using the converged kω . 

3.2.2 Exponential power distribution 
For a more correct approximation, the activation 

function ( ( ))g' U t  is defined as follows: 
 

                   (19) 
 

where α  is a positive constant. According to the value of 
α , this function can represent Gaussian and different non-
Gaussian distributions. The learning rule is calculated as 
follows: 

First, the gradients of ( ( ))g' U t  with respect to kω  and 
α  are given by 

 

  
(20)

 

  
(21)

 
 

and the gradient descent rules for kω  and α  are derived as 
 

  
(22)

 
  (23) 
  (24) 

 
Following the steepest descent update rule, until the 

filter coefficients and α  converge from the initial values, 
they are updated by (14) and 

 

  (25) 
 

where j  denotes the iteration index and αη  denotes the 
learning rate for α , respectively. 

3.3 Frequency Response of Implemented 
Filter 

Fig. 2 shows the frequency responses of the 
conventional modulation frequency filtering approaches 
and the proposed FIR filter on the modulation frequency, 

 

Fig. 2. Frequency response of (a) conventional
modulation frequency filtering and proposed FIR filters
with Gaussian activation function for three arbitrary
utterances, and (b) filters obtained using the proposed
method with Gaussian activation function under a
range of noise environments. 
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which describes the temporal variations of the frame 
sequences. The filters obtained using the proposed method 
applied the learning rules (17) and (18) to three arbitrary 
isolated words. Their common attribute is the suppression 
of low modulation frequencies containing heavy noise 
components. Although the conventional methods use an 
identical filter for all cases, the proposed method results in 
an adaptive high-pass modulation frequency filter for an 
arbitrary utterance on a particular condition. Fig. 2(b) 
represents the filters obtained using the proposed method 
under a range of noise environments with 0 dB SNR. Each 
filter has a different cut-off frequency, which appears to 
indicate the different effects of each noise on the 
modulation frequency. 

 

 

Fig. 3. Temporal trajectories of MFCC 1C  (a) before 
filtering, (b) after RASTA filter, (c) after the Hirsch filter, 
and (d) after the proposed method with Gaussian 
activation function. 

4. Performance Evaluation 

4.1 Speaker Independent Speech 
Recognition 

The vocabulary consisted of 75 phonetically balanced 
Korean words that are mutually confusable, and the 
database consisted of 6750 words spoken by 90 male 
speakers in a quiet room. The utterances for the 68 

speakers were used to form training data, and those from 
the other 22 speakers were used for the evaluation. The 
distorted speeches for a channel normalization evaluation 
were generated by applying the filter used by Hermansky 
to the clean speech data [13]. In addition, noisy speeches 
were simulated by adding the noise sources taken from the 
NOISEX-92 database to the clean speech data. 

The feature vectors were extracted on 20 ms speech 
segments every 10 ms, and each frame consisted of 23 
mel-scaled filterbank energies. The components of each 
frame were normalized by their frame energy and scaled 
logarithmically. The proposed blind modulation frequency 
filtering and other approaches were then applied, and 12 
mel-frequency cepstral coefficients (MFCC) were 
extracted using a discrete cosine transform (DCT). The 
triphone was chosen as the basic unit of recognition, and 
all the corresponding 271 triphones in the vocabulary were 
used. Each triphone was modeled using a three-state left-
to-right continuous-density hidden Markov model 
(CDHMM), and one Gaussian mixture with a diagonal 
covariance matrix was used for each state. All models 
were trained according to the maximum likelihood 
criterion, and the segmental k-means procedure was 
iterated ten times from an initial uniform segmentation for 
convergence. 

Though speaker independent speech recognition, the 
performance of the proposed method was shown under 
both channel mismatch and additive noise conditions. 
Filtering in the logarithmic domain is a solution for 
convolutional noise, such as channel distortion, speaker 
variation, etc.. According to the environmental 
linearization in Section 3,1, however, the proposed method 
was also implemented to cope with additive noise in the 
logarithmic domain. 

4.2 Experimental Results 
Table 1 lists recognition results for the channel 

distortion condition. The learning rate η  was 0.0003, and 
the average number of iterations for converging was 32.1 
The learning rate was dependent on the range of changes, 
ωΔ , and was not a dominant factor on the recognition 

results. The convergence condition was satisfied when for 
all filter coefficients, the variation (= new old

k kω ω− ) was 
below the threshold, i.e. 0.0001 in this paper. The order K  
of the FIR filter performing blind decorrelation was chosen 
as 9. The time-span related to the temporal correlation 
among the successive feature vectors is between 30 and 90 
ms [26], and 9K =  corresponds to a 90 ms time-span. 
The filter coefficients were initialized as zero except 

0 1ω = , which were updated by learning rules using the 
Gaussian activation function. In Table 1, the proposed 
method outperforms the other filtering methods for a 
channel mismatch condition. Table 2 presents the 
recognition results for the speech corrupted by white 

                                                 
1  The computation complexity to obtain the filter coefficients is 

((3K+2)N+2)T for each iteration, where K denotes the order of 
decorrelation filter, N is a feature dimension, and T is the number of 
frames, respectively. Practically, the computation time is approximately 
45ms on a 2.6GHz Xeon processor. 
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Gaussian noise (WGN). RASTA and Hirsch filters were 
also applied to the logarithmic domain for a fair 
comparison with the proposed filter. The proposed method 
was comparable to other methods above 0 dB SNR and 
yielded significant improvement at 0 dB SNR. Table 2 
shows that the modulation frequency filtering on the 
logarithmic domain is appropriate for additive noise. 

 
Table 1. Word accuracies (%) of modulation frequency 
filtering methods for a channel mismatch condition 

No channel 
distortion Channel distortion 

Baseline Baseline RASTA 
method 

Hirsch’s 
method 

Proposed
method

95.8 69.4 95.9 96.4 98.1 
 
Table 3 shows the effect of modulation frequency 

filtering including a noise reduction technique. A noise 
reduction technique was used to compensate for the effects 
of additive noise, and modulation frequency filtering was 
then conducted on the logarithmic spectral domain. As a 
noise reduction technique, the spectral subtraction (SS) 
method was applied to the linear spectral domain. 
Modulation frequency filtering with a noise reduction 
module was valid, and the proposed method outperformed 
the existing methods under low SNR conditions. 

 
Table 2. Word accuracies (%) of modulation frequency 
filtering methods with WGN 

SNR 
(dB) Baseline CMS RASTA 

method 
Hirsch’s 
method 

Proposed
method

clean 95.8 95.8 98.0 97.8 98.2 
20 88.1 93.2 95.8 95.8 96.1 
10 56.3 77.8 81.4 85.1 85.3 
0 7.5 28.5 27.7 33.1 52.6 
 

Table 3. Word accuracies (%) of the modulation 
frequency filtering methods including a spectral 
subtraction under WGN conditions 

SNR 
(dB) 

SS 
+ 

CMS 

SS 
+ 

RASTA 
method 

SS 
+ 

Hirsch’s 
method 

SS 
+ 

Proposed
method 

20 93.3 96.1 96.0 96.3 
10 83.1 85.6 88.7 89.8 
0 44.8 45.3 51.5 66.2 
 

Table 4 presents the recognition results for two 
activation functions. In the case of the exponential power 
distribution, the learning rate, αη , was 0.002, and α  was 
initialized as 2. The results show that the exponential 
power distribution is more effective for noisy speech, and 
might require a more correct representation for the noisy 
feature distribution. On the other hand, a slight 
improvement shows that the Gaussian approximation can 
capture a part of the noise effect. Fig. 3 compares the 
temporal trajectories of the cepstral coefficient 1C  before 

and after modulation frequency filtering for a particular 
utterance. This shows that modulation frequency filtering 
methods effectively recover corrupted parts, and the 
proposed method is the most robust for noise damage. 
Note that while the dynamic range of feature values is 
decreased in the stationary regions of trajectories, the 
transition regions are enhanced. This indicates that a 
context-dependent recognition model is needed for 
modulation frequency filtering approaches. 

 
Table 4. Word accuracies (%) of the proposed method 
when two activation functions are used  

SNR (dB)
Activation  
function 

clean 20 10 0 

Gaussian 98.2 96.1 85.3 52.6 
Exponential power 98.4 96.9 87.9 56.2 
 

Table 5 compares the performance of the proposed 
method and other methods under Lynx helicopter noise 
(LYNX) and destroyer operation room noise (DOP). These 
noises are approximately stationary and contain significant 
low-frequency components. The proposed method was 
also effective for these noises and outperformed the other 
methods at low SNRs. Tables 2-5 show that the proposed 
method provides outstanding improvement under 
significant additive noise conditions. This suggests that 
additive noise acts as a bias component in the logarithmic 
domain and severe noises are reduced and normalized by 
adaptive filtering in the logarithmic domain. 

 
Table 5. Comparison of the proposed method and 
others by word accuracies (%) 

             Noise
 
Methods 

LYNX DOP 
SNR (dB) SNR (dB) 

20 10 0 20 10 0 
Baseline 92.1 76.5 23.8 92.2 78.0 24.3

CMS 93.6 85.9 47.1 93.1 83.7 37.9
RASTA method 96.2 86.6 42.7 95.2 84.9 33.5
Hirsch’s method 96.8 92.1 55.7 96.1 89.5 44.3

Proposed
method

Gaussian 96.3 92.3 69.1 95.8 89.9 65.7
Exponential

power 96.7 93.1 69.8 96.0 91.3 65.8

 

5. Applying to Other Feature 
Representations 

Modulation frequency filtering approaches can be also 
applied to other feature domains and representations as 
well as log-sub-band energies. They can be performed 
directly on the cepstral coefficients related linearly to the 
logarithmic spectrum. The original RASTA filter is for the 
perceptual linear predictive (PLP) representation. This 
Section evaluates the performance of the proposed method 
in the conventional MFCC and PLP features. 
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5.1 Cepstral Representation 
Because the cepstrum coefficients are more compact 

and have less redundancy than the log-spectral coefficients, 
they are accepted in most recognition systems. The 
compact form reduces the computational load of 
modulation frequency filtering approaches, and is more 
effective for improving the noisy speech recognition scores. 
In Section 4, filtering on a MFCC, which is a final feature 
parameter of recognizer, might be more desirable. 

Table 6 lists the results of modulation frequency 
filtering in the MFCC domain under the task of Section 4. 
Because of the linear relationship between cepstral domain 
and log-spectral domain, the recognition performance of 
conventional modulation frequency filtering methods was 
the same as that of Tables 2 and 5. The one difference is 
that they were processed not on an 18 dimension feature 
but on a 12 dimension feature. In contrast, the proposed 
method performs a new learning for the MFCC feature, 
and can adapt the filter coefficients to a new domain. The 
proposed method uses rules (17) and (18) for the learning 
of filter coefficients, and the learning rate η  was 0.00006. 
This method showed a faster processing speed and 
provided better performance than processing in log-
spectral domain. 

 
Table 6. Word accuracies (%) of applying to MFCC 
domain 

Noise SNR 
(dB) Baseline RASTA 

method 
Hirsch’s 
method 

Proposed
method

WGN 

clean 95.8 98.0 97.8 98.0 
20 88.1 95.8 95.8 96.3 
10 56.3 81.4 85.1 86.5 
0 7.5 27.7 33.1 53.2 

LYNX 
20 92.1 96.2 96.8 96.7 
10 76.5 86.6 92.1 93.3 
0 23.8 42.7 55.7 69.2 

DOP 
20 92.2 95.2 96.1 96.1 
10 78.0 84.9 89.5 92.1 
0 24.3 33.5 44.3 64.7 

 

5.2 PLP Representation 
To estimate the auditory spectrum, the PLP uses the 

critical-band spectral resolution, the equal-loudness curve, 
and the intensity-loudness power law, which are three 

concepts from the psychophysics of hearing. Fig. 4 
presents a block diagram of the PLP method. Modulation 
frequency filtering is performed on log-subband energies 
between critical-band analysis and the equal-loudness 
curve, and intensity-loudness power law might compensate 
for the rapid spectral-amplitude variation of the transition 
regions caused by filtering.  

PLP analysis was performed on 30 ms speech segments 
every 10ms, and the feature vector consisted of 12 cepstral 
coefficients. Modulation frequency filtering approaches 
were applied to 23 log-subband energies in the analysis 
procedure. The experimental results are listed in Table 7. 
The PLP-cepstrum provided better performance than the 
MFCC, and conventional modulation frequency filtering 
methods were more effective than in log-spectral and 
cepstral stages of the MFCC extraction process. The 
proposed method outperformed the conventional methods 
at all SNRs, and showed a superior recognition score to 
processing on other feature domains except for 0dB SNR. 
In the implementation of the proposed method, 23 log-
subband energies of each frame were normalized to the 
frame total energy for learning stability, and the 
coefficients of the high-pass modulation frequency filter 
were obtained by learning rules using the Gaussian 
activation function. The learning rate was 0.00005. 

 
Table 7. Word accuracies (%) of modulation frequency 
filtering on PLP representation 

Noise SNR
(dB) baseline RASTA 

method 
Hirsch’s
method

Proposed
method

WGN

clean 97.9 99.0 98.2 99.1 
20 90.0 95.8 95.6 96.5 
10 61.1 82.9 87.9 88.9 
0 4.0 28.3 35.8 50.4 

LYNX
20 94.5 96.5 97.3 98.2 
10 77.1 87.7 92.3 93.5 
0 22.1 43.5 54.8 64.9 

DOP
20 94.3 95.5 96.9 97.0 
10 82.5 87.1 90.6 91.4 
0 36.1 42.1 54.1 66.3 

 
From the above results, the proposed method reduces 

the effect of noise in various feature representations. 
Modulation frequency filtering approaches are used 
primarily for parameters related linearly to the log-spectral 
domain, but they can also be applied to the linear 
predictive coding (LPC)-cepstrum, in which the sub-band 

 

Fig. 4. Modulation frequency filtering in PLP feature analysis. 
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energy is not available [15]. In view of recognition rate, 
the proposed method is significant in the PLP 
representation. Although it is considered the best 
compromise between performance and computational load, 
one may require processing of the conventional MFCC 
domain. 

6. Conclusion 

This paper proposed a new design method of the 
modulation frequency filtering approach, which de-
emphasizes the slow-varying noise perturbations in the 
spectral feature domain. This is a data-driven method 
providing an adaptive high-pass modulation frequency 
filter for each utterance. The proposed method was based 
on the local decorrelation of the frame sequence, and the 
information-maximization theory was used to perform 
such a decorrelation. This method may also describe some 
temporal properties of the human auditory system. The 
proposed method was implemented as an FIR filter form in 
the log-spectral domain of the MFCC extraction process, 
and was also applied to the MFCC and PLP representation. 
The recognition results for speaker-independent isolated-
word show that the effect of the proposed method is 
outstanding under significant noise conditions, and 
suggests that the proposed method can be performed on 
various feature representations. In addition, plotting the 
feature sequences after modulation frequency filtering 
makes the procedure of channel normalization explicit. For 
a practical evaluation, the proposed method will need to be 
applied to real service environments, such as voice search 
systems, which will be performed in the near future. 
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