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Abstract: In order for humans and robots to interact in daily life, robots need to understand human 
speech and link it to their actions. This paper proposes a hierarchical behavior model for robot 
action control using natural language commands. The model, which consists of episodes, primitive 
actions and atomic functions, uses a sentential cognitive system that includes multiple modules for 
perception, action, reasoning and memory. Human speech commands are translated to sentences 
with a natural language processor that are syntactically parsed. A semantic parsing procedure was 
applied to human speech by analyzing the verbs and phrases of the sentences and linking them to 
the cognitive information. The cognitive system performed according to the hierarchical behavior 
model, which consists of episodes, primitive actions and atomic functions, which are implemented 
in the system. In the experiments, a possible episode, “Water the pot,” was tested and its feasibility 
was evaluated.      
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1. Introduction 

As robotic technology advances, robots are expected to 
interact with humans in daily life to fulfill human demands, 
such as completing housework, helping people with 
disabilities, etc.. The primary method used to control 
robots should be natural language because it is natural for 
human cognition and is easy to learn and understand for 
those unfamiliar with computer languages. On the other 
hand, linking natural language to robotic actions and 
perceptions based on sensorimotor information is 
challenging in the field of robot intelligence [1, 2]. 

For a robot to follow natural language instruction, it 
needs to both understand speech and link it to its 
computational functions and parameters. This procedure 
requires gradual steps, including natural language 
processing (NLP), syntactic parsing, semantic analyzing of 
arguments, and linking of such arguments to cognitive 
information, which is connected to the computational 
functions of the robot controller. In addition, it is important 
to account for the range of human commands. People can 

order simple actions or complex tasks consisting of 
multiple actions. Occasionally, the tasks require that the 
action be repeated using the same or different parameters. 
Therefore, it is important to consider the reuse of 
commands and actions. 

This paper proposes a methodology for robot action 
control using natural language based on a hierarchical 
behavior model. The proposed behavior model was 
implemented in a sentential cognitive system installed in a 
robot to link human commands to the actions of the robot. 
The model hierarchically connects the arguments of the 
command sentence to the atomic functions using the 
information stored in an object descriptor and a motion 
descriptor in the cognitive system. The sentence, which is 
parsed syntactically and analyzed semantically for verbs 
and phrases, is called an episode that calls the lower 
primitive actions and the lowest atomic functions 
necessary for performing the task hierarchically.  

The main contributions of this paper are that 1) it 
proposes a hierarchical model for performing tasks by 
linking episodes, primitive actions and atomic functions as 
well as for producing various episodes by reusing and 
compounding primitive actions; 2) it uses syntactic parsing 
and semantic analysis to link a sentential command to a 
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robotic action; and 3) it proposes a methodology for 
connecting the verbs and phrases of a sentence to the 
cognitive information of the cognitive system, which is 
used to elicit robot actions. 

The rest of this paper is organized as follow. Section 2 
describes the work related to the area of connecting 
commands to robot actions. Section 3 presents a sentential 
cognitive system including multiple modules and overview 
of proposed robot action control. Section 4 details the 
hierarchical behavior model in relation to the cognitive 
system. Section 5 reports the experimental results, showing 
the implementation of the model and the performance of 
an episode. Section 6 concludes the paper. 

2. Related Work 

Natural-language-based robot control is related to 
multiple areas, ranging from robotic intelligence to 
cognitive linguistics, including grounding, natural 
language direction and semantic parsing. This study is 
related to grounding, which connects human language and 
cognitive information [3, 4]. To represent the meanings of 
the words grounded in reality, grounding language was 
used to describe the real world [5] and motor actions [6, 7], 
and to connect a graphics of a game to language [8]. 
Anchoring, which is a symbolic grounding that establishes 
and maintains a relationship between the symbol and 
sensory data, is also related to the present study in the 
same way as linguistic grounding [9, 10]. Within this 
context, this study focused specifically on the semantic 
parsing of action language that connects the phrases of the 
imperative sentences to the cognitive information of a 
robot. 

One of the most prominent areas of linking language to 
robot actions is the field of natural language direction, 
which is used to navigate and move the robots according to 
human direction. [11, 12] presented grounding verbs in 
natural language commands to create a path to be used for 
robot navigation, and utilize a cost function that scores the 
matching of the language to path plans at each time step. 
These studies use a spatial description clause (SDC) to 
parse the instructions into a set of separable instruction 
clauses. In [13], statistical machine translation (SMT) was 
adopted to link natural language instruction to a map 
constructed by a robot. These approaches use translation 
and parsing tools, such as SDC and SMT to convert natural 
language commands to descriptions to move robots, but it 
is difficult to apply them to complex tasks, such as 
housework, which require the robot’s hands to perform a 
range of primitive actions. To overcome this problem, this 
approach uses a hierarchical model, in which a human can 
order complex tasks that consist of multiple primitive 
actions. Primitive actions are natural language commands, 
which mean the elementary actions of humans that can be 
reused with the same verbs and different phrases.  

This study is similar to that reported in [14] in that it 
adopts a hierarchical approach using primitive tasks to 
construct more complex tasks. On the other hand, although 
[14] did not consider the reusability of primitive 
commands, the current approach uses a hierarchical model 

to address the reusability of primitive actions as well as to 
construct complex tasks with primitive actions. [15] is also 
similar to the present work in that it uses natural language 
direction to manipulate the objects on a table and because 
it uses object schemas describing the characteristics of 
objects, such as the size, color, and weight, for use in the 
input information required to manipulate them. The 
present work, however, uses a more structural approach by 
adopting a cognitive system that includes a motion 
descriptor using a hierarchical behavior model as well as 
an object descriptor. In addition, this study also integrates 
sensory-motor, reasoning, and memory modules. A more 
systematic approach that employs semantic parsing to 
connect commands to cognitive information, including 
object schemas is also used.  

3. Sentential Cognitive System and Robot 
Action Control 

3.1 Sentential Cognitive System  
Natural-language-based robot control requires that the 

robots receive perceptional and behavioral cognitive 
information. In the proposed approach, the robot performs 
actions based on a sentential cognitive system (SCS). The 
SCS has a multimodal scheme, as shown in Fig. 1.  

In the lower part of the cognitive system, the 
perception and behavior modules input environmental 
information and output behavioral executions. The vision 
module is used to recognize visual events by capturing the 
scenes and recognizing objects. The sensory module 
covers all the robot’s senses, except for visual and 
linguistic perception. The listening module transforms the 
speech of humans to sentence form and comprises speech 
recognition and language understanding. The speech 
module is for speech synthesis and the speaking of 
sentences. The utterance module takes charge of the 
robot’s actions that are performed hierarchically with the 
combination of episodes, primitive actions and atomic 
functions.  

The cognitive manager covers the interpretation and 
reasoning of events. The event interpreter is used to make 
a sentence for an event based on the perception and 
behavior. In the proposed approach, an event is defined as 
the basic unit of cognition and a sentence is adopted as a 
descriptor of the event. In particular, an event is the 
recognized change differentiating from the information 
stored previously in memory. The event interpreter 
translates the cognitive information obtained from the 
modules, generates sentences and revises the information 
of the memory. Spatial imagery is an imitation of the 
human mental model of spatial reasoning. If the SCS needs 
to determine the visual situation of a certain time, the 
spatial imagery constructs a scene virtually by placing the 
models of the objects in its image plane and derives the 
spatial context from the scene. In the reasoning module, 
the robot is endowed with innate reasoning rules.  

A memory domain exists in the upper part of the 
system that consists of a sentential memory, which stores a 
series of sentences describing the events with auxiliary 
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Fig. 1. Sentential cognitive system (SCS).   
 

 

Fig. 2. Block diagram of the natural language command “Pick up the cup” for robot motion and its execution. 
 

memories, i.e. an object descriptor and motion descriptor. 
The object descriptor stores information about objects, 
such as their shape, feature and current position. The 
object descriptor also provides object-related schematic 
information, such as a holding position and the history of 
the robot’s action related to the object. The motion 
descriptor stores hierarchically the imperative verbs linked 
to episodes and primitive actions and is then connected to 
atomic functions, which are programmed as functions. 
This paper focuses on this module, and details the 
hierarchical behavior model in the next section. 

If an event occurs internally or externally, the SCS 
generates a sentence describing the cognitive information 
of the event. An event should occur in a single module of 
the SCS and generate a simple English sentence clause. To 
interpret the sentence, semantic parsing is was adopted, 
where the sentences are parsed syntactically and analyzed 
using the sentential types, phrasal arguments are 
segmented according to the semantic structure, and the 

arguments are connected to the cognitive information. 

3.2 Overview of Robot Action Control on 
the SCS 

Fig. 2 gives an example of the execution of a natural 
language command, “Pick up the cup.” Using the vision 
module of the cognitive system, the scene of a cup is 
captured and recognized by its features, such as its shape, 
position and color, which are stored in the object 
descriptor. When the listening module inputs a human 
voice, the module transfers it to a sentence using a NLP. 
The cognitive manager’s event interpreter parses the 
sentence syntactically and semantically. The syntactic 
parsing of the sentence produces dividable units, including 
verbs and phrases, which are used in semantic parsing, 
which connects them to the cognitive information stored in 
the memory. The verb phrase (VP) is linked to the action 
of an episode stored in the motion descriptor (e.g., VP pick 
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(PRT 1  up)). The noun phrase (NP) is connected to an 
object stored in the object descriptor along with the 
cognitive features, such as shape, position and state (e.g. 
NP the cup). If the sentence is an imperative, the cognitive 
manager makes the event interpreter generate an action 
with the object as an episode by performing the atomic 
functions that are connected hierarchically with the verb. 
All the sentences interpreted from the events are stored in 
the sentential memory. On the other hand, in the case of 
complex commands, such as “Clean the room” and “Water 
the pot”, the robot needs to know how to integrate a series 
of primitive actions to perform the command. In the next 
section, the methodology for performing complex tasks on 
the motion descriptor of the SCS will be detailed. 

4. Hierarchical Robot Control by Natural 
Language Commands 

4.1 Syntactic and Semantic Parsing 
When human speech is input, the listening module 

translates it to a sentence. Subsequently, the event 
interpreter syntactically and semantically parses the 
sentence to determine the sentence type and to extract the 
verbs and phrases to be connected to cognitive information. 
The current approach depends more on the parsing 
processes than other natural language direction to move 
robots. For the syntactical parser, the Penn Treebank rule 
was adopted [16]. In the Penn Treebank rule, a sentence is 
segmented with phrases: verbs, nouns, adjectives, adverbs, 
prepositions, WH-adverbs, WH-nouns, and WH-
prepositional phrases. For example, sentences are parsed 
and segmented into phrases, such as in the following 
examples: 

 
(1) (S (NP Tom) (VP picks (PRT up) (NP the cup))) 
(2) (S (VP pick (PRT up) (NP the cup))) 
(3) (S When did (NP Tom) (VP pick (PRT up) (NP the 

cup))) 
 
After syntactical parsing, the SCS performs semantic 

parsing that analyzes the parsed sentence and links the 
phrases in the sentence to the cognitive information, such 
as the computational motion functions and visual features 
of the recognized objects. In the case of sentence analysis, 
the sentence type can be determined from the order of the 
words: (1) is declarative for (S (NP VP)), (2) is an 
imperative for (S (VP)), and (3) is a WH question for (S 
WH Aux (NP VP)). If the sentence is imperative, it can be 
assumed that the human wants the robot to perform an 
action.  

To link the phrases to the cognitive information, the 
cognitive manager links the extracted verb (VP pick) to an 
episode that is connected to a computational function in 
the motion descriptor. The noun phrase, (NP the cup), is 
connected to the object in the object descriptor. The object 
descriptor, which provides memory space for object 

                                                 
1 PRT is the abbreviation of a particle in the Link Grammar Parser 

schema, stores the cognitive information of objects, which 
includes object’s features and the contextual information, 
such as the hold points for picking up an object. 

 

 

Fig. 3. Hierarchical behavior model. 

4.2 Hierarchical Behavior Model 
This approach adopts a hierarchical behavior model to 

provide the effective usability of predefined primitive 
actions. Fig. 3 shows the hierarchical behavior model, 
which consists of three levels: atomic functions, primitive 
actions and episodes. Episodes are the commands asking 
the robot to perform a task. The episodes are a series of 
primitive actions that become the basic unit for teaching 
the robot actions by combining the primitive actions. This 
primitive action calls the atomic functions, which are 
predefined with the atomic functions in the motion 
descriptor of the SCS, and performs them physically in the 
motion module. 

The episodes are the general tasks that a human wants 
to make the robot perform and are linked to the verbs of 
the sentences that the user speaks, as shown in the left of 
Table 1. For example, if a user orders the robot to water 
the pot, the robot performs an action according to the 
hierarchical structure with a series of primitive actions: 
move to the cup, pick up the cup, move to the pot, 
approach the pot, pour the cup, and retract hands. A 
primitive action, such as “Pick up the cup,” calls the 
atomic functions: recognize(X), extend(X), grasp(X), and 
retract(). The motion descriptor of the SCS stores the 
components of each level of the hierarchical model, 
preserves their linkage, and performs the human linguistic 
commands hierarchically.  

A primitive action is a basic unit of action in the view 
of human speech. A user can order the robot to perform an 
action with a primitive action without any programming to 
control the robot. The sequence of primitive actions 
constructs an episode that is the robot’s task. For example, 
in the case of the command, “Pick up the cup,” a user 
would not say, “Move your hand above the cup, approach 
the cup, grasp the cup and retract your hand”. A user 
would simply say, “Pick up the cup.” Generally, an 
episode consists of multiple primitive actions that combine 
to form a complex task. Sometimes, an episode is just a 
single primitive action, such as “Pick up the cup.” 
Primitive actions are the smallest unit of human speech 
used to order the robot to perform a task. 

A primitive action is the lowest language level in the 
conversational communication. On the other hand, the 
atomic functions are the unit of a program in the controller 
of the robot. If an action is difficult to describe with a 
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Table 1. Definition of the episodes, primitive actions and atomic functions.

 
 

verbal sentence or if it is ineffective to express it with a 
verb because of the complexity of the action, it can be 
implemented with atomic functions. The atomic functions 
are sensorimotor functions based on the unit of a simple 
motion. 

Table 2 lists the execution of the command “Water the 
pot.” The syntactically parsed phrase of (NP the pot) is 
searched in the object descriptor with its features. The 
phrase calls primitive actions by replacing X with (NP, the 
pot) and (NP the cup). These primitives call the atomic 
functions: recognize(O1), extend(O1), grasp(O1), and 
retract(). The value of the parameters of the primitive 
actions originates from the features of the object.  

 
Table 2. The example of performing an episode, “Water 
the pot”. 

Episodes Primitive Actions Atomic Functions
VP Move (PP to (NP the 
cup)) 

recognize(O1)  
moveto(O1)  

VP Pick (PRT up) (NP 
the cup) 

recognize(O1)  
extend(O1)  
grasp(O1)  
retract()  

VP Move (PP to(NP the 
pot))  

recognize(O2)  
moveto(O2) 

VP Approach (PP to (NP 
the pot)) 

recognize(O2)  
extend(O2)  

VP Pour (NP the cup) rotate(wrist,a1,s1,t1) 
rotate(wrist a2,s2,t2) 

VP Water (NP 
the pot) 

VP Retract (NP hands) retract() 
 
4.3 Reusability of Behavior 

Primitive actions are simple actions that can appear 
repeatedly in common tasks in daily life. Ordinary people 
want to construct multiple episodes using natural language 
without any knowledge of the actual programming. This 
means that a user should be able to teach a robot using 
natural language and construct an episode by ordering a 
series of primitive actions. In Table 1, “Pick up the cup” 
can be used for both “Water the pot” and “Give me water.”  

In addition, the same verbs need to be used in a 
sentence for an action, even if multiple objects are used. In 
this case, the robot executes different actions according to 
the shape of the objects. This means that the robot executes 
the actions slightly differently, depending on the shape and 
position of those objects. For example, the primitive action 

“Pick up X” could be applied to many objects, such as 
bottles, cups and dishes. With the primitive action, the 
robot can perform multiple actions, such as “Pick up the 
cup,” “Pick up the bottle,” and “Pick up the can.” The 
statements describing the objects of the sentences are then 
compared with the objects stored in the object descriptor. 
The SCS finds the shape and position of the objects and 
calculates the proper point to grasp them to execute a 
command.  

4.4 Teaching Episodes 
New episodes are composed of a series of primitive 

actions predefined with atomic functions. When a user 
wishes to teach a new episode with natural language, the 
SCS of the robot should notice the start and end of the 
series. To give notice of the start and end of the episode, 
the users can inform them with predefined sentences, as 
shown in Table 3. The users can tell the robot what is the 

Table 3. Example of natural-language-based teaching 
of an episode, “Water the pot”. 

 Sentences State 
User The episode of watering the pot begins  

Robot The episode of watering the pot begins Start an episode
User Move to the cup  

Robot (action) I moved to the cup  Success 
User Pick up the cup  

Robot (action) I picked up the cup  Fail 
User You failed  

Robot I failed Recognize fail 
User Pick up the cup  

Robot (action) I picked up the cup  Success 
User Move to the pot  

Robot (action) I moved to the pot  Success 
User Approach to the pot  

Robot (action) I approached to the pot  Success 
User Pour the cup to the pot  

Robot (action) I poured the cup to the pot Success 
User Retract hands  

Robot (action) I retracted hands Success 
User The episode of watering the pot ends  

Robot The episode of watering the pot ends End of the episode
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                Color image                              Depth image                           3D representation                         3D detection of cup  

Fig. 4. 3D object recognition using Kinect. 
 

     
                          (a) Pick up the cup-extend(x)           (b) Pick up the cup-grasp(x)                      (c) Retract 

 

       
                               (d) Approach the pot                            (e) Pour the cup                         (f) Retract 

Fig. 5. An episode, “Water the pot,” using multiple primitive actions. 
 

start and end of an episode by saying “The episode begins” 
and “The episode ends.” In the procedure of learning, the 
robot might fail to perform the primitive actions. If the 
robot fails to perform the action, the user can ask the robot 
to repeat it until the performance is successful. 

5. Experimental Results 

The proposed robot control methodology was tested 
with the hierarchical behavior model using the scenario, in 
which the user orders the robot with a natural language 
command and the robot follows the instruction. The 
testbed of the robot is TUBO (Tongmyong University 
roBOt), which has 16 degrees of freedom. The robot uses a 
range imaging sensors, Microsoft Kinect [17], for object 
recognition. The sensor captures the images of the objects 
located on a table, and recognizes the objects using a 3D 
recognition algorithm, including segmentation and feature 
extraction of the objects using the depth and color images 
in a 3D environment, and detects the position of the 
objects. Fig. 4 presents the results of object recognition. 
By generalizing both the color and depth images, the 
vision module produces 3D images and calculates the real 
position of the cup and pot, and stored them in an object 
descriptor. 

When a user orders the robot to perform an action 
using natural language commands, the listening module of 
the SCS inputs the speech and translates it to a sentence 
with an NLP program, Dragon NaturallySpeaking 
(Nuance) [18]. In the event interpreter, the sentence is 
parsed syntactically using the Link Grammar Parser using 
the Penn Treebank rule [19], and the sentence type is 
determined. If the sentence is an imperative, the verb of 
the sentence is linked to a verb of episodes in the motion 
descriptor, and the noun phrases of the sentence are linked 
to the objects stored in the object descriptor. The verbs of 
the episode are then called the primitive action, and the 
atomic functions hierarchically to perform the actions.  

Fig. 5 shows the behavior of the robot acting according 
to the primitive actions. When a user commands the robot 
to “Water the pot,” the listening module translates the 
speech to a sentence and parses it syntactically in an event 
interpreter. The extracted verb, “water”, is connected to 
the episode, “Water the X.” The phrase “the pot” is then 
searched for in the object descriptor using its cognitive 
information, such as its position, shape and color. In the 
motion descriptor, the SCS finds the lower level primitive 
actions, and the actions called the atomic actions located at 
the lowest level. Fig. 5 (a–f) shows each of the robot’s 
actions. 

Fig. 6 shows the learning and execution of an episode 
stored in the sentential memory implemented with MS 
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(a) 

 

 
(b) 

Fig. 6. Results of the sentential memory of the SCS after learning and executing “Water the pot”, (a) is the 
procedure of learning the new episode and (b) is executing it. MODULE is the module that the event occurred, L for
listening, U for utterance, and M for motion modules. TYPE is the type of a sentence, D for declarative and I for
imperative sentences. 

 
 

     
                                    (a) Pick up the cup                    (b) Pick up the bottle        (c) Pick up the can  

Fig. 7. Reusing the primitive action, "Pick up X", with other objects. 
 

Table 4. Results of ordering the episode, ‘Water the 
pot’. 

# position (x, y, z) (mm) success rates 
(10 times) 

1 200, 400, 750 8 
2 350, 400, 750 8 
3 300, 300, 750 7 
4 300, 400, 750 10 
5 400, 400, 750 9 
6 400, 450, 750 9 
7 450, 450, 750 10 
8 400, 350, 750 10 
9 450, 300, 750 8 
10 500, 450, 750 9 

 

SQL. In the table, ETIME indicates the time that the event 
happened, and MODULE and TYPE are the modules of 
the SCS and the type of the sentence, respectively. VERB 
is the verb of the sentence and AVERB are auxiliary verbs. 
A1 and A2 are the first and second arguments of the 
sentence. SPACE and TIME are the prepositional phrases 
indicating the space and time in which the event occurs. 
Fig. 6(a) shows how the robot learns a new episode with 
natural language. When a user indicates the start and end 
of an episode with the sentences, “The episode of watering 
the pot begins” and “The episode of watering the pot end,” 
the motion descriptor of SCS stores the sequence of the 
primitive actions. Fig. 6(b) shows the performance of the 
episode. The episode calls primitive actions hierarchically 
stored in the motion descriptor. 

Fig. 7 shows the reuse of the primitive actions when 
the primitive action “Pick up X” was applied to a cup, can, 
and bottle. Table 4 lists the success rate of the execution of 
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the episode, “Water the pot.” The success rate of the 
execution of the episode was checked when the cup was 
located in various positions. The results revealed an 
average success rate of 88%. Table 5 lists the error of 
reusability of “Pick up X” when the action was tested using 
a cup, bottle and can. The average success rate was 
approximately 83%. The failure was attributed to various 
sensorimotor errors, such as visual sensing errors, 
kinematics errors and mechanical errors of the robot’s 
movement. 

 
 

Table 5. Result of reusing the primitive action, "Pick up 
X", with other objects. 

objects success rates 
(10 times) 

Cup 9 
Bottle 8 

Spray can 8 
 

6. Conclusion 

This paper proposed a methodology of natural-
language-based robot control using a hierarchical behavior 
model based on a sentential cognitive system. The model 
consists of three hierarchical levels of behavior: episodes, 
primitive actions, and atomic functions. The natural 
language command of a user is translated to a sentence and 
parsed syntactically. Based on semantic parsing, the verbs 
of the sentences are connected to the episodes, and the 
phrases are linked to the cognitive information stored in 
the object descriptor. The primitive actions were made 
reusable by applying them to multiple episodes and by 
substituting the noun phrases, i.e. objects, while using the 
same verbs in the sentences for primitive actions. This 
approach can be applied to a service robot that provides 
help with housework or that assists people with disabilities. 
On the other hand, this study has some limitations in that 
the performance of the commands depends on the accuracy 
of the sensory motor modules of the SCS. Therefore, 
future work will focus on increasing the accuracy of the 
modules and applying other natural language commands 
that are used in daily life to the proposed model.   
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