베타-사이클로 덱스트린 중합체/신남산 복합체의 제조 및 특성 연구

Preparation and Characterizations of Complex Composed of ${\beta}$-Cyclodextrin Polymer/Cinnamic Acid

  • 목은영 (강원대학교 의생명과학대학) ;
  • 차현주 (강원대학교 의생명과학대학) ;
  • 김진철 (강원대학교 의생명과학대학)
  • Mok, Eun Young (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Cha, Hyun Ju (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Jin-Chul (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University)
  • 발행 : 2012.10.10

초록

베타-사이클로덱스트린($\beta$-cyclodextrin, $\beta$-CD) 중합체(polymer)는 가교제인 epichlorohydrin (EPI)과 $\beta$-CD의 몰 비가 10 : 1으로, 강한 염기조건에서 합성하였다. 합성한 $\beta$-CD 중합체 내의 $\beta$-CD contents는 52%였다. 광, pH반응성 복합체를 제조하기 위해 신남산을 첨가하였고 첨가된 신남산은 소수성 상호작용에 의해 $\beta$-CD 공동에 포접되었다. 형성된 $\beta$-CD 중합체와 신남산 복합체를 투과전자현미경을 이용하여 관찰하였을 때 복합체의 형상을 관찰하였다. 광 조사에 따른 이량화도는 $\lambda$ = 365 nm의 UV조사 시 증가하였으며 $\lambda$ = 254 nm의 UV조사 시 감소하였다. 또한 동적 광 산란(dynamic light scattering)장치를 이용하여 측정한 복합체의 크기는 광 조사 유무에 따라 큰 변화가 측정 되지 않았고, pH 반응성을 관찰한 실험에서도 복합체의 크기와 제타 전위(zeta potential) 모두 pH에 따른 변화가 나타나지 않았다.

$\beta$-cyclodextrin ($\beta$-CD) polymers were prepared in a strong alkali condition solution (NaOH solution 30% (w/v)) using epichlorohydrin (EPI) as a cross-linker, and the molar ratio of EPI to $\beta$-CD was 10 : 1. The $\beta$-CD content in $\beta$-CD polymers is about 52%. In order to get the photo-responsible and pH-responsible, cinnamic acid was added to be inserted into the cavities of $\beta$-CD due to the hydrophobic interaction. The complex formation was confirmed using transmission electron microscope. The dimerization degree of complexes increased under UV irradiation at $\lambda$ = 365 nm but decreased under the UV irradiation at $\lambda$ = 254 nm. Dynamic light scattering analysis of particle sizes showed that the sizes of complexes did not change with different UV wavelength. Moreover, the complexes were pH-responsible because of the carboxyl group of cinnamic acid, but the size and zeta potential of the complex did not change in strong acid and alkali conditions.

키워드

참고문헌

  1. P. Chivukula, K. Dusek, D. Wang, M. Duskova-Smrckova, P. Kopeckova, and J. Kopecek, Biomaterials, 27, 1140 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.020
  2. X. Yang and J. C. Kim, Biotechnol. Bioeng., 106, 295 (2010).
  3. B. Yao, C. Yang, K. Zhang, C. Ni, H. Song, and Z. Ni, M. Chen. Mater sci-poland, 27, 319 (2009).
  4. A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust, M. Hayes, S. A. Vail, and C. D. Park, Langmuir, 23, 224, (2007). https://doi.org/10.1021/la061632n
  5. D. Shi, M. Matsusaki, T. Kaneko, and M. Akashi, Macromolecules, 41, 8167 (2008). https://doi.org/10.1021/ma800648e
  6. M. Pattabiraman, L. S. Kaanumalle, A. Natarajan, and V. Ramanurthy, Langmuir, 22, 7605 (2006). https://doi.org/10.1021/la061215a
  7. A. Rosso, S. Ferrarotti, M. V. Miranda, N. Krymkiewichz, B. C. Nudel, and O. Cascone, Biotechnol. Lett., 27, 1171 (2005). https://doi.org/10.1007/s10529-005-8654-6
  8. E. Efmorfopoulou and P. Rodis, Chem. Nat. Compd., 40, 362 (2004). https://doi.org/10.1023/B:CONC.0000048248.51418.12
  9. A. Kokkinou, S. Makedonopoulou, and D. Mentzafos, Carbohydr. Res., 328, 135, (2000). https://doi.org/10.1016/S0008-6215(00)00091-4
  10. A. Buvari-barcza and L. Barcza, J. Inclusion Phenom. Macrocyclic Chem., 36, 355 (2000). https://doi.org/10.1023/A:1008007425732
  11. E. Renard, A. Deratani, G. Volet, and B. Sebille, Eur. Polym. J., 33, 49 (1997). https://doi.org/10.1016/S0014-3057(96)00123-1
  12. C. Basappa, P. Rao, D. N. Rao, and S. Divakar, Int. J. Food Sci. Technol., 33, 517 (1998). https://doi.org/10.1046/j.1365-2621.1998.00216.x
  13. M. S. Lee and J. C. Kim, J. Appl. Polym. Sci., 124, 4339 (2012). https://doi.org/10.1002/app.35411