Characteristics of p-Xylene Adsorption using Functionalized Mesoporous Silica

관능기화 메조포러스 실리카를 이용한 파라자일렌 흡착 특성

  • 김상현 (대구대학교 공과대학 환경공학과) ;
  • 박종훈 (대구대학교 공과대학 환경공학과) ;
  • 강석태 (경희대학교 공과대학 토목공학과) ;
  • 정재우 (경남과학기술대학교 공과대학 환경공학과) ;
  • 김수홍 ((주)에스지알테크) ;
  • 조윤철 (대전대학교 공과대학 환경공학과) ;
  • 이채영 (수원대학교 공과대학 토목공학과)
  • Published : 2012.06.01

Abstract

This study was designed to examine the feasibility of functionalized mesoporous silica as the adsorbent for benzene, toluene, ethylbenzene, and xylene isomers (BTEX) in groundwater. p-Xylene was used as the model compound of BTEX. A series of functionalized mesoporous silica with MCM-41 type of structure was synthesized using a co-condensation method. Monoamine, triamine, nitrile, phenyl, and octyl groups were functionalized to the mesoporous silica structure. Adsorption sites for p-Xylene in a functionalized mesoporous silica were Si-O-Si covalent bond, the surfactant, and the functional group. Octyl-functionalized mesoporous silica with stearyltrimethylammonium chloride as a surfactant showed the highest adsorption ability. The maximum xylene adsorption capacity of the octyl-functionalized mesoporous silica with stearyltrimethylammonium chloride based on Langmuir model was 4.17 mmol/g on $20^{\circ}C$, which was 2.9 times higher than that of MCM-41.

본 연구에서는 지하수 내의 BTEX 제거를 위한 흡착제로서 다양한 관능기화 메조포러스 실리카를 검토하였다. BTEX 물질로는 파라자일렌이 사용되었다. 관능기화 메조포러스 실리카는 공중합을 통해 MCM-41 기반 구조에 모노아민, 트리아민, 니트릴, 페닐, 옥틸기를 부착하여 합성되었다. 관능기화 메조포러스 실리카에서 파라자일렌 흡착 부위로 작용하는 부위는 Si-O-Si 결합, 계면활성제, 관능기인 것으로 사료된다. 관능기화 메조포러스 실리카의 자일렌 흡착능을 비교한 결과, 옥틸기를 부착한 경우에 MCM-41에 비해 자일렌 흡착능이 향상되었으며, 계면활성제로는 stearyltrimethylammonium chloride(STMACl)가 cetyltrimethylammonium bromide(CTMABr)에 비해 우수하였다. MCM-41을 기본 구조로, 옥틸기를 관능기로, STMACl을 계면활성제로 사용한 메조포러스 실리카는 $20^{\circ}C$에서 Langmuir model 상에서 최대 4.17 mmol/g의 최대 흡착량을 가질 것으로 평가되었으며, 이는 MCM-41에 비해 약 2.9배 높은 수치였다.

Keywords

References

  1. Banerjee, K., Cheremisinoff, P. N. and Cheng S. L.(1997), Adsorption Kinetics of O-xylene by Flyash, Water Research, Vol. 31, No. 2, pp. 249-261. https://doi.org/10.1016/S0043-1354(96)00003-6
  2. Dou, B., Hu, Q., Li, J., Qiao, S. and Hao, Z.(2011), Adsorption Performance of VOCs in Ordered Mesoporous Silicas with Different Pore Structures and Surface Chemistry, Journal of Hazardous Materials, Vol. 186, No. 85, pp. 1615-1624. https://doi.org/10.1016/j.jhazmat.2010.12.051
  3. Hoffmann, F., Cornelius, M., Morell, J. and Froba, M.(2006), Silica-based Mesoporous Organic-inorganic Hybrid Materials, Angewandte Chemie (International Education in English), Vol. 45, No. 20, pp. 3216-3251. https://doi.org/10.1002/anie.200503075
  4. Huh, S., Chen, H. T., Wiench, J. W., Pruski, M. and Lin, V. S. Y.(2004), Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Biofunctionalized Besoporous Silica Nanosphere-based Catalytic System, Journal of the American Chemical Society, Vol. 126, No. 4, pp. 1010-1011. https://doi.org/10.1021/ja0398161
  5. Jaynes, W. F. and Boyd, S. A.(1991), Hydrophobicity of Siloxane Surfaces in Smectites as Revealed by Aromatic Hydrocarbon Adsorption from Water, Clay and Clay Minerals, Vol. 39, No. 4, pp. 428-436. https://doi.org/10.1346/CCMN.1991.0390412
  6. Kim, J. M.(2004), Synthesis and Application of Mesoporous Materials, Physics & High Technology, Vol. 13, No. 7/8, pp. 12-17.
  7. Kim, S. H., Huang, Y., Sawatdeenarunat, C., Sung, S., Lin and V. S. Y.(2011), Selective Sequestration of Carboxylic Acids from Biomass Fermentation by Surface-functionalized Mesoporous Silica Nanoparticles, Journal of Materials Chemistry, Vol. 21, No. 32, pp. 12103-12109. https://doi.org/10.1039/c1jm11299f
  8. Lee, H. Y., Lee, K. D., Park, S. W.(2008), Influence of Surface Characteristics of Mesoporous Silica on Pb(II) and Cd(II) Adsorption Behaviors, Journal of Korean Society of Environmental Engineers, Vol. 30, No. 6, pp. 673-679.
  9. Lee, S. H., Hong, S. W., Choi, J. W.(2011), Removal and Recycling of Phosphate in Wastewater using Mesoporous Structure, Korean Industry Chemistry News, Vol. 14, No. 5, pp. 22-29.
  10. Seliem, M. K., Kmarneni, S., Cho, Y., Lim, T., Shahien, M. G., Khalil, A. A., El-Gaid and I. M. A.(2011), Organosilicas and Organo-clay Minerals as Sorbents for Toluene, Applied Clay Science, Vol. 52, No. 27, pp. 184-189. https://doi.org/10.1016/j.clay.2011.02.024
  11. Suvanto, S., Hukkamaki, J., Pakkanen, T. T. and Pakkanen, T. A.(2000), High-Cobalt-Loaded MCM-41 Via the Gas-Phase Method, Langmuir, Vol. 16, No. 9, pp. 4109-4115. https://doi.org/10.1021/la991176l