Decomposition of Triclosan onto E-beam Process using a Design of Experiment(DOE)

전자빔을 이용한 triclosan 제거에 있어서 실험계획법의 이용

  • 장태범 (경기대학교 환경에너지시스템공학과) ;
  • 이시진 (경기대학교 환경에너지시스템공학과)
  • Published : 2012.06.01

Abstract

This study investigated on the photolytic degradation of Triclosan by E-beam process. The optimization of process was investigated during a series of batch experiments by design of experiments(DOEs). The DOE was one of the statistical application that was used for designed the response surface to determine the effects of each parameters. The responses were applied as removal rate of Triclosan(%, $Y_1$) and TOC removal rate(%, $Y_2$). Two independent variables were concentration of Triclosan and irradiation intensity that were designed as "$x_1$" and irradiation intensity was designed as "$x_2$". The regression equation in coded parameter between the Triclosan removal efficiencies(%) and TOC removal efficiencies(%) was $Y_1=63-12.4335x_1+15.1835x_2+5.8125x{_1}^2-5.6875x{_2}^2-0.75x_1x_2(R^2=95.1%,\;R^2(Adj)=91.7%)$ and $Y_2=46-8.8462x_1+11.7175x_2-0.75x{_1}^2-6.25x{_2}^2(R^2=98.7%,\;R^2(Adj)=97.7%)$, respectively. The model predictions agreed well with the experimentally observed results $R^2$ and $R^2(Adj)$ over 90% within both of $Y_1$ and $Y_2$. This result shows that the regression model express well about the effects of parameters on E-beam process and the statistical method was successfully applied.

본 연구는 E-beam 공정을 통한 triclosan의 광분해에 대하여 조사하였다. 공정의 최적화는 실험계획법에 의한 회분식 실험을 통해 수행되었다. 실험계획법은 통계적 적용 방안의 하나로 각 인자간의 영향을 고려하기 위해 반응표면을 설계하는 방법이다. 반응은 triclosan의 제거율(%, $Y_1$)과 TOC 제거율(%, $Y_2$)로 적용되었고 두 개의 독립변수로서 triclosan의 농도를 "$x_1$", 조사강도를 "$x_2$"로 설계하였다. 코드화 된 인자에 대한 Triclosan 제거율과 TOC 제거율에 따른 회귀식은 각각 $Y_1=63-12.4335x_1+15.1835x_2+5.8125x{_1}^2-5.6875x{_2}^2-0.75x_1x_2(R^2=95.1%,\;R^2(Adj)=91.7%)$$Y_2=46-8.8462x_1+11.7175x_2-0.75x{_1}^2-6.25x{_2}^2(R^2=98.7%,\;R^2(Adj)=97.7%)$로 나타났다. $Y_1$$Y_2$에 대한 모델 예측식의 결정계수($R^2$)와 수정결정계수($R{^2}_{(Adj)}$)의 값이 90% 이상으로 나타나 실험적 관찰결과와 잘 부합하였다. 이러한 결과는 회귀모델이 E-beam 공정에서의 인자영향을 잘 설명하며 통계적 적용이 성공적으로 적용된 것으로 판단된다.

Keywords

References

  1. Ahn, K. C., Zhao, B., Chen, J., Cherednichenko, G., Sanmarti, E., Denison, M. S., Lasley, B., Pessah, I. N., Kultz, D., Chang, D. P. Y., Gee, S. J., Hammock, B. D.(2008), In Vitro Biologic Activities of the Antimicrobials Triclocarban, its Analogs, and Triclosan in Bioassay Screens: Receptor-based Bioassay Screens, Environ. Health Perspect, Vol. 116, No. 9, pp. 1203-1210. https://doi.org/10.1289/ehp.11200
  2. Cha, J., Cupples, A. M.(2010), Triclocarban and Triclosan Biodegradation at Field Concentrations and Resulting Leaching Potentials in Three Agricultural Soils, J. Chemosphere, Vol. 81, No. 4, pp. 494-499. https://doi.org/10.1016/j.chemosphere.2010.07.040
  3. Chalew, T. E. A., Halden, R. U.(2009), Environmental Exposure of Aquatic and Terrestrial Biota to Triclosan and Triclocarban, J. Am. Water Resour. Assoc., Vol. 45, No. 1, pp. 4-13. https://doi.org/10.1111/j.1752-1688.2008.00284.x
  4. Chen, J. G., Ahn, K. C., Gee, N. A., Ahmed, M. I., Duleba, A. J., Zhao, L., Gee, S. J., Hammock, B. D., Lasley, B. L.(2008), Triclocarban Enhances Testosterone Action: a New Type of Endocrine Disruptor, Endocrinology, Vol. 149, No. 3, pp. 1173-1179. https://doi.org/10.1210/en.2007-1057
  5. Chen, L., Venkateswarlu, N., Gregory, K.(2012), Spectroscopic Study of the Degradation of Antibiotics and the Generation of Representative EfOM Oxidation Products in Ozonated Wastewater, J. Chemosphere, Vol. 86, No. 8, pp. 774-782. https://doi.org/10.1016/j.chemosphere.2011.11.003
  6. Chu, S., Metcalfe, C. D.(2007), Simultaneous Determination of Triclocarban and Triclosan in Municipal Biosolids by Liquid Chromatography Tandem Mass Spectrometry, J. Chromatogr. A., Vol. 1164, No. 1-2, pp. 212-218. https://doi.org/10.1016/j.chroma.2007.07.024
  7. Chun, S. Y., Cahng, S. W.(2011a), The Study of Statistical Optimization of MTBE Removal by Photolysis($UV/H_2O_2$), Korean Geo-environmental Society, Vol. 12, No. 9, pp. 55-61.
  8. Chun, S. Y., Chang, S. W.(2011b), Statistical Analysis of The Influence of Inorganic Anions on MTBE Decomposition by Photolysis($UV/H_2O_2$), Korean Geo-environmental Society, Vol. 12, No. 10, pp. 57-62.
  9. Coogan, M. A., La, Point T. W.(2008), Snail Bioaccumulation of Triclocarban, Triclosan, and Methyltriclosan in a North Texas, USA, Stream Affected by Wastewater Treatment Plant Runoff, Environ. Toxicol. Chem., Vol. 27, No. 8, pp. 1788-1793. https://doi.org/10.1897/07-374.1
  10. Deniz, N., Angela, R., Dimitrios, B., Viviane, Y. (2012), Removal of the Antibiotic Levofloxacin (LEVO) in Water by Ozonation and $TiO_2$ Photocatalysis, Chemical Engineering Journal, Vol. 189-190, No. 1, pp. 41-48. https://doi.org/10.1016/j.cej.2012.02.016
  11. Gu, J. E.(2009), Application of EBI-ACF Hybrid Processes for Phenol Removal, Graduate School, Kumoh National Institute of Technology.
  12. Halden, R. U., Paull, D. H.(2005), Co-occurrence of Triclocarban and Triclosan in US Water Resources, Environ. Sci. Technol, Vol. 39, No. 6, pp. 1420-1426. https://doi.org/10.1021/es049071e
  13. Heath R. J., Li J., Roland G. E., Rock C. O.(2000), Inhibition of the Staphylococcus Aureus NADPH-dependent enoyl-acyl Carrier Protein Reductase by Triclosan and Hexachlorophene, J. Biol. Chem, Vol. 275, No. 7, pp. 4654-4659. https://doi.org/10.1074/jbc.275.7.4654
  14. Heidler, J., Sapkota A., Halden, R. U.(2006), Partitioning, Persistence, and Accumulation in Digested Sludge of the Topical Antiseptic Triclocarban during, Environ. Sci. Technol, Vol. 40, No. 11, pp. 3634-3639. https://doi.org/10.1021/es052245n
  15. Hwang, H. Y., Chang, S. W.(2011), The Study of Statistical Optimization of 1,4-dioxane Treatment Using E-beam Process, Korean Geo-environmental Society, Vol. 12, No. 4, pp. 25-31.
  16. Jang, E. H., Lim, S. J., Kim, T. H.(2011), Distribution of Antibiotic Resistant Microbes in Aquaculture Effluent and Disinfection by Electron Beam irradiation, Journal of KSEE, Vol. 33, No. 7, pp. 492-500.
  17. Nfodzo, P., Choi, H.(2011), Triclosan Decomposition by Sulfate Radicals: Effects of Oxidant and Metal Doses, Original Research Article Chemical Engineering Journal, Vol. 174, No. 2-3, pp. 629-634.
  18. Suarez, S., Dodd, M. C., Omil, F., Gunten, U.V.(2007), Kinetics of Triclosan Oxidation by Aqueous Ozone and Consequent Loss of Antibacterial Activity: Relevance to Municipal Wastewater Ozonation, Water Research, Vol. 41, No. 12, pp. 2481-2490. https://doi.org/10.1016/j.watres.2007.02.049
  19. Thomas, J. H., Michael, B. T.(2002), Prophylactic Antibiotics Alter the Bacteriology of Infected Necrosis in Severe Acute Pancreatitis, Elsevier Science Inc, Vol. 195, No. 6, pp. 759-767. https://doi.org/10.1016/S1072-7515(02)01494-1
  20. Yang, B., Ying, G. G., Zhao, J. L., Zhang, L. J., Fang, Y. X., Nghiem, L. D.(2011), Oxidation of Triclosan by Ferrate: Reaction Kinetics, Products Identification and Toxicity Evaluation Original Research Article, Journal of Hazardous Materials, Vol. 186, No. 1, pp. 227-235. https://doi.org/10.1016/j.jhazmat.2010.10.106
  21. Yu, S. H., Chi, I. H., Chang, S. W., Lee, S. J., Chun, S. Y., Kim, H. L.(2008), Decomposition Characteristics of Fungicides (Benomyl) using a Design of Experiment(DOE) in an E-beam Process and Acute Toxicity Assessment, Journal of KSEE, Vol. 30, No. 9, pp. 955-960.