Numerical Investigation on Piled Raft Foundation on Sandy Soils

사질토 지반에 시공된 말뚝전면기초의 수치해석연구

  • Ahn, Tae-Bong (Department of Civil & Railroad Engineering, Woosong University)
  • Published : 2012.06.01

Abstract

Finite element method was used to compare un-piled and piled raft foundation behaviors on sandy soils in this study. The soil parameters were estimated from SPT tests of 25 boreholes. Based on these soil parameters, a finite element analysis was conducted on un-piled and piled raft foundations. For the un-piled raft, the normalized settlement parameter for raft sizes of $8m{\times}8m$ and $15m{\times}15m$ ranged from 1.02~1.15 and 0.64~0.81, respectively. The raft thickness affects differential settlement and bending moments, but has little effect on load sharing or maximum settlement. Pile spacing greatly affected the maximum settlement, the differential settlement, the bending moment in the raft, and the load shared by the piles, while the differential settlement, the maximum bending moment and the load sharing are not affected very much by increasing the pile lengths.

본 연구에서는 사질지반에서 말뚝전면기초와 전면기초와의 거동을 유한요소해석을 이용하여 비교하였다. 25개의 시추공의 표준관입시험의 결과를 이용하여 구한 토질정수를 유한요소해석에 사용하였다. 말뚝을 사용하지 않은 전면기초의 경우 $8m{\times}8m$ and $15m{\times}15m$의 크기의 정규화된 침하계수는 각각 1.02~1.15 and 0.64~0.81의 범위로 나타났다. 전면기초의 두께는 부등침하와 휨모멘트에 영향을 미치고 하중분담과 최대침하에는 큰 영향이 없었다. 말뚝의 간격은 최대침하와 부등침하, 휨모멘트에, 말뚝의 하중분담에 영향을 받고 반면에 부등침하와 휨모멘트는 말뚝의 길이에는 큰 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Chen, L. and Poulos, H. G.(1993), Analysis of Pile-Soil Interaction under Lateral Loading Using Infinite and Finite Elements, Computers and Geotechnics, Vol. 15, No. 4, pp. 189-220. https://doi.org/10.1016/0266-352X(93)90001-N
  2. Fleming, W. G. K., Weltman, A. J., Randolph, M. F. and Elson, W. K.(1992). Piling Engineering, 2nd Ed., Surrey Univ. Press, pp. 126-157.
  3. Kang, I. K., Kim, H. T., Han, Y. J., Kim, J. S., Choi, S. H. (2010), Optimum Design of Piled Raft Foundations using the Data-filtering Hybrid Genetic Algorithm, International Journal of Geo-Engineering, Vol. 2, No. 4, pp. 35-53.
  4. Kim, S. K., Song, S.O., Han, S. K., Jeon, J. K., Lee, W. S. (2011), Behavior of the Embankment on Normally Consolidated Clay Supported by the Piled Raft, Journal of Korean Geotechnical Engineering, Vol. 27, No. 4, pp. 33-41. https://doi.org/10.7843/kgs.2011.27.4.033
  5. Poulos, H. G.(1989). Pile Behavior - Theory and Application, Geotechnique, Vol. 39, No.3, pp. 365-415. https://doi.org/10.1680/geot.1989.39.3.365
  6. Prakoso, W. A. and Kulhawy, F. H., (2001). Contribution to Piled Raft Foundation Design, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No . 1, pp. 17-24. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(17)
  7. Reul, O. and Randolph, M. F.(2003). Piled Rafts in Over-consolidated Clay: Comparison of in situ Measurements and Numerical Analysis, Geotechnique, Vol. 53, No. 3, pp. 301-315. https://doi.org/10.1680/geot.2003.53.3.301