A Study on p-y Curves for Nearshore Seabed of Jeju Island

제주 연근해 해저암반의 p-y 곡선 모델에 관한 연구

  • 장영은 (과학기술연합대학원대학교) ;
  • 이준용 (한국건설기술연구원 Geo인프라연구실) ;
  • 조삼덕 (한국건설기술연구원 Geo인프라연구실) ;
  • 유동우 ((주)동호) ;
  • 최창호 (한국건설기술연구원 Geo인프라연구실)
  • Published : 2012.06.01

Abstract

Safety issue for offshore wind-turbine foundation becomes a crucial factor as offshore wind turbines have been scaled up. Correspondingly, there is a demand to understand the effect of soil-structure interaction on to system behavior in geotechnical engineering point of view. The p-y curve method researched in past few decades is one of the most appropriate methodology to analyze the problem. In this study, recently proposed p-y curve models for various rocks are calibrated to analyze the engineering characteristics of seabed of Jeju Island where it is known to be most suitable area for offshore wind energy farm. Step by step calibration process for p-y models is presented. Analysis results show that subgrade reaction generally increases as closer to seabed. It is also shown that the behavioral characteristics of foundation reflect well rock properties in terms of resultant moment, shear force, etc.

해상풍력시스템의 규모가 점차적으로 증가하고 있는 추세에 따라 상부구조물을 지지하는 기초구조물 안정성 확보의 중요성이 대두되고 있다. 이에 따라, 지반공학적 측면에서 기초구조물과 지반의 상호작용이 전체 시스템에 미치는 영향을 파악하기 위한 해석방안이 요구되고 있으며, p-y 곡선 모델의 적용이 대표적인 방법이다. 본 연구에서는 풍황이 우수하여 해상풍력발전 시스템 운영을 위한 대상지로써 적합하다고 알려져 있는 제주도 해저지반(현무암)의 공학적 특성을 현재까지 제안된 암반 p-y 곡선 모델에 적용하였다. 이를 통해 제주도 및 국내 암반 분포 지역에 대한 해상풍력시스템 기초구조물과 해저암반 간의 상호작용 해석 과정을 정리하고 향후 연구 방향을 제안하였다. 전반적으로 암반 p-y 곡선 산정결과는 지표면에 근접할수록 지반반력이 증가하는 경향을 나타냈으며, 말뚝에 작용하는 모멘트, 전단력 등을 분석한 결과 암반의 공학적 특성을 적절히 모사할 수 있음을 확인하였다.

Keywords

References

  1. Bieniawski, Z. T. (1978), Determining Rock Mass Deformability: Experience from Case Histores, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, No. 5, pp. 237-248. https://doi.org/10.1016/0148-9062(78)90956-7
  2. Carter, J. P. and Kulhawy, F. H. (1992). Analysis of Laterally Loaded Shafts in Rock, J. Geotech. Engrg., Vol. 118, No. 6, pp. 839-855. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(839)
  3. Choi, C., Jang, Y., Cho, S., Kim, J. (2011), Lateral Bearing Capacity of Pile Foundation Including the Study of Offshore Wind Turbine Foundation, Korea Wind Energy Association, Vol. 1, No. 1, pp. 185-193.
  4. DiGioa, A. M., Jr. and Rojas-Gonzalez, L. F. (1993), Discussion on Analysis of Laterally Loaded Shaft in Rock, J. Geotech. Engrg., Vol. 119, No. 12, pp. 2014-2015. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(2014)
  5. DNV, (2010), Design of Offshore Wind Turbine Structures, DNV-OS-J101, Oslo. Norway, pp. 125-127
  6. Eum, K. Y. (2002), Study on the Mechanical Properties of Volcanic Rocks in Chejudo, Thesis, Yonsei University. pp. 28-53.
  7. Gabr, M. A., Borden, R. H., Cho, K. H., Clark, S. C., and Nixon, J. B. (2002), p-y Curves for Laterally Loaded Drilled Shafts Embedded in Weathered Rock, FHWA/NC/2002-008, North Carolina University, North Carolina. USA, pp. 181-194.
  8. Hall, C. G. and Wang, M. C. (2000). Behavior of Laterally Loaded Caisssions in Weak Rock, J. Geotech. Geoenvir. Engrg., Vol. 126, No. 11, pp. 240-253.
  9. Hoek, E., and Brown, E. T. (1988), Hoek - Brown Criterion - A 1988 Update, Proc. 15th Canadian Rock Mechnical Symp, University of Toronto, Toronto, Canada, pp. 31-38.
  10. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), Hoek-Brown Failure Criterion 2002 Edition, NARMS-TAC 2002: Mining and Tunnelling Innovation and Opportunity, Vol. 1, pp. 267-273.
  11. Kang, T. S. (2004), Behavior of Drilled Shaft Installed in the Inclined Ground, Thesis, Yonsei University, pp. 3-4.
  12. Korea Institute Energy Research(KIER)(2006), The Geological Inspection of Seabed in Woljeongri, Cheju Island, Report, Korea Institute Energy Research, pp. 41-56.
  13. Kim, J. H. (2006), A Study on the Mechanical Characteristics and the Strength in Pyoseonri Basalt, Thesis, Cheju National University, pp. 9-53.
  14. Marinos, P., and Hoek, E. (2000), GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation. Proc. of the International Conference on Geotechnical and Geological Engineering., Melbourne, Austraila, pp. 1422-1440.
  15. Matlock, H. (1970), Correlations for Design of Laterally Loaded Piles in Soft Clay. Proc. 2th Offshore Technology Conference., Houston. Texas., Vol. 1, pp. 577-607.
  16. Nam, J. M., Yoon, J. M., Song, Y. S., Kim, J. H. (2008), Analysis of Engineering Properties to Basalt in Cheju island, Korean Geosynthetics Society, Vol. 7, No. 1, pp. 13-21.
  17. Reese, L. C., Cox, W. R., and Koop, F. D. (1974), Analysis of Laterally Loaded Piles in Sand. Proc. 6th Offshore Technology Conference., Houston. Texas., Vol. 2, pp. 473-483.
  18. Reese, L. C. and Nyman K. J. (1978), Field Load Tests of Instrumented Drilled Shafts at Islamorada, Florida., A Report to Girdler Foundation and Exploration Corporation, Clearwater, Florida, pp. 1-150.
  19. Reese, L. C. (1997), Analysis of Laterally Loaded Piles in Weak Rock, J. Geotech. Geoenvir. Engrg., Vol. 101, No. 7, pp. 1010-1017.
  20. To, A. C, Ernst, H. and Einstein, H. H. (2003), Lateral Load Capacity of Drilled Shafts in Jointed Rock, J. Geotech. Geoenvir. Engrg., Vol. 129, No. 8, pp. 711-726. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(711)
  21. Yang, K. (2006), ph. D. Dissertation, Analysis of Laterally Loaded Drilled Shafts In Rock, Department of Civil Engineering, University of Akron, Ohio, USA, pp. 200-256.
  22. Zhang, L., Ernst, H. and Einstein, H. H. (2000), Nonlinear Analysis of Laterally Loaded Rock-Socketed. J. Geotech. Geoenvir. Engrg., Vol. 126, No. 11, pp. 955-968. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(955)