The Study of TCE Dechlorination using Geobacter lovleyi with Slow Release Substrate Applied

Slow Release Substrate를 이용한 Geobacter lovleyi의 TCE 탈염소화 연구

  • 차재훈 (경기대학교 환경에너지시스템공학과) ;
  • 안상우 (한양대학교 건설환경공학과) ;
  • 박재우 (한양대학교 건설환경공학과) ;
  • 장순웅 (경기대학교 환경에너지시스템공학과)
  • Published : 2012.09.01

Abstract

This study investigated characteristics of decomposition of tetrabutoxysilane (TBOS) as a slow release substrate (SRS) and on effect of TBOS decompostion compounds (acetate and butylate) for anaerobic dechlorination of trichloroethylene (TCE). In the batch experiment, TCE, cis-dichloroethene (cis-DCE), 1-butanol and TBOS were analysed by GC/FID and acetate and butylate were measured by HPLC. 1M of TBOS transferred and accumulated 4M of 1-butanol by abiotically hydrolysis reaction. The hydrolysis rate was in a range of 0.186 ${\mu}M/day$. On other hand, 1-butanol fermented to butyrate and acetate with indigenous culture from natural sediments. This results showed that TBOS could be used a slow release substrate in the natural sites. The dechlorinated potential of TCE with acetate and butyrate was increased with a decreasing initial TCE concentrations. In addition, first order coefficients of dechlorination with acetate as electron donor was higher then that with butyrate. It is because that dechlorination of Geobacter lovleyi was affected by substrate affinity, biodegradability and microbial acclimation on various substrates. However, dechlorinated potential of Geobacter lovleyi was decreased with accumulation cis-DCE in the anaerobic decholoronation process. The overall results indicated that SRS with Geobacter lovleyi might be a promising material for enhancing dechlorination of TCE on natural site and cis-DCE should be treated by ZVI as reductive material or by coexisting other dechlorinated bacteria.

본 연구에서는 Slow Release Substrate(SRS)로 사용되는 TBOS의 분해특성과 TBOS 분해생성물인 acetate와 butyrate를 적용한 탈염소화 효율을 파악하고자 하였다. 회분식 실험은 GC/FID를 이용하여 TCE 및 cis-dichloroethene(cis-DCE), 1-butanol, TBOS를 분석하였으며, acetate와 butylate는 HPLC를 이용하여 분석하였다. 혐기성 가수분해 반응을 통해 1M의 TBOS는 4M의 1-butanol로 전환 및 축적되었으며, 가수분해율은 $0.186{\mu}M/day$로 나타났다. 또한, 1-butanol은 퇴적토 내 토착균주에 의해 acetate와 butyrate로 분해되었다. 이 결과 TBOS는 자연에서의 탈염소화 공정에서 SRS로 사용하기에 적합한 것으로 판단된다. Acetate와 butyrate를 전자공여체로 적용한 TCE 탈염소화 반응은 초기 TCE 농도가 낮아짐에 따라 탈염소화 효율은 높아지는 것으로 나타났다. 또한, acetate를 적용한 탈염소화 반응의 1차 반응 상수가 butyrate를 적용한 경우보다 높게 나타났다. 이는 탈염소화 반응에서 Geobacter lovleyi의 기질친화도 및 생분해성, 그리고 다양한 기질에 대한 적응도의 영향으로 판단된다. 그러나 Geobacter lovleyi의 TCE 탈염 소화 반응에 따른 cis-DCE의 축적이 발생할 경우 Geobacter lovleyi의 탈염소화 능력이 감소하는 것으로 나타났다. 결론적으로 SRS는 Geobacter lovleyi를 이용한 TCE 탈염소화 공정 향상에 도움이 될 것이며, 이에 따라 발생되는 cis-DCE는 영가철 같은 환원성 금속이나 공존 가능한 탈염소화 미생물을 이용한 처리가 함께 필요할 것으로 판단된다.

Keywords

References

  1. Amos, B. K., Sung, Y. B., Fletcher, K. E., Gentry, T. J., Wei-Min Wu, Criddle, C. S., Zhou, J. and Loffler, F. E.(2007), Detection and Quantification of Geobacter Lovleyi Strain SZ: Implications for Bioremediation at Tetrachloroetheneand Uranium-Impacted Sites, Applied and Environmental Microbiology, Vol. 73, No. 21, pp. 6898-6904. https://doi.org/10.1128/AEM.01218-07
  2. An, S. W. Kim, Y. J., Chun, S. Y., Lee, S. J., Park, J. W. and Chang, S. W.(2010), Competitive Extraction of Chlorinated Solvents by Headspace SPME GC/FID, Korean Geo-Environmental Society, Vol. 11, No. 5, pp. 61-67.
  3. Borden, R. C. and Rodriguez, B. X.(2006), Evaluation of Slow Release Substrates for Anaerobic Bioremediation, Bioremediation Journal, Vol. 10, No. 1-2, pp. 5969.
  4. Cho, J. S.(2011), Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater, Korean Society of Environmental Engineering, Vol. 33, No. 6, pp. 405-412. https://doi.org/10.4491/KSEE.2011.33.6.405
  5. Cupples, A. M., Spormann, A. M. and McCarty, P. L.(2003), Growth of a Dehalococcoides-Like Microorganism on Vinyl Chloride and Cis-dichloroethene as Electron Acceptors as Determined by Competitive PCR, Applied and Environmental Microbiology, Vol. 69, No. 2, pp. 953-959. https://doi.org/10.1128/AEM.69.2.953-959.2003
  6. Duhamela, M., Wehra, S. D., Yua, L., Rizvia, H., Seepersada, D., Dworatzeka, S., Coxb, E. E and Edwardsa, E. A.(2002), Comparison of Anaerobic Dechlorinating Enrichment Cultures Maintained on Tetrachloroethene, Trichloroethene, Cis-dichloroethene and Vinyl Chloride, Water Research, Vol. 36, No. 17, pp. 4193-4202. https://doi.org/10.1016/S0043-1354(02)00151-3
  7. Eichler, B. and Schink, B.(1984), Oxidation of Primary Aliphatic Alcohols by Acetobacterium Carbinolicum sp. Nov., a Homoacetogenic Anaerobe, Arch Microbiol, Vol. 140, No. 2-3, pp. 147-152. https://doi.org/10.1007/BF00454917
  8. Fennell, D. E., Gossett, J. M. and Zinder, S. H.(1997), Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene, Environ Sci Technol, Vol. 31, No. 3, pp. 918-926. https://doi.org/10.1021/es960756r
  9. Freedman, D. L. and Gossett, J. M.(1989), Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions, Applied and Environmental Microbiology, Vol. 55, No. 9, pp. 2144-2151.
  10. Gradiski, D., Bonnet, P. and Raoult, G.(1978), Comparative Acute Inhalation Toxicity of the Principal Chlorinated Aliphatic Solvents, Arch Ma1 Prof., Vol 39, No. 4-5, pp. 249-257.
  11. Haest, P. J., Ruymen, S., Springael, D. and Smolders, E.(2006), Reductive Dechlorination at High Aqueous TCE Concentrations, Commun Agric Appl Biol Sci., Vol. 71, No. 1, pp. 165-169.
  12. He, J. Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S. and L�fler, F. E.(2003), Detoxification of Vinyl Chloride to Ethene Coupled to Growth of an Anaerobic Bacterium, Nature, Vol. 424, No. 62, pp. 62-65. https://doi.org/10.1038/nature01717
  13. Holliger, C.(1995), The Anaerobic Microbiology and Biotreatment of Chlorinated Ethenes, Curr. Opin. Biotechnol, Vol. 6, No. 3, pp. 347-351. https://doi.org/10.1016/0958-1669(95)80058-1
  14. Jeong, S. W.(2003), Implication of National Soil and Groundwater Monitering Result, Korean Society of Environmental Engineering, Vol. 25, No. 12, pp. 1596-1599.
  15. Kennedy, L. G., Everettb, J. W. and Gonzalesc, J.(2006), Assessment of Biogeochemical Natural Attenuation and Treatment of Chlorinated Solvents, Altus Air Force Base, Altus, Oklahoma, Journal of Contaminant Hydrology, Vol. 83, No. 3-4, pp. 221-236. https://doi.org/10.1016/j.jconhyd.2005.11.006
  16. Kim, J. S.(2008), Knowledge and Current Research Trend on Biological PCE Removal, Korean Journal of Odor Research and Engineering, Vol 7, No. 1, pp. 34-44.
  17. Kim, Y. J., An, S. W., Jang, J. W., Yeo, I. H., Kim, H. S., and Park, J. W.(2012), Kinetic Studies of Nanoscale Zero-Valent Iron and Geobacter lovleyi for Trichloroethylene Dechlorination, Korean Society Of Soil And Groundwater Environment, Vol. 17, No. 1, pp. 33-41. https://doi.org/10.7857/JSGE.2012.17.1.033
  18. Kylin, B., Reichard, H., Sumegi, I. and Yllner, S.(1962), Hepatotoxic Effect of Tri- and Tetra-chlorethylene on Mice, Nature, Vol. 193, No. 4813, pp. 395. https://doi.org/10.1038/193395a0
  19. Loffler, F. E., Sun, Q., Li, J. andTiedje, J. M.(2000), 16S rRNA Gene-Based Detection of Tetrachloroethene- Dechlorinating Desulfuromonas and Dehalococcoides Species, Applied Microbiology and Biotechnology, Vol. 66, No. 4, pp. 1369-1374.
  20. Maa, X., Novakb, P. J., Semmensb, M. J, Clappc, L. W. and Hozalskib, R. M(2006), Comparison of Pulsed and Continuous Addition of H2 Gas via Membranes for Stimulating PCE Biodegradation in Soil Columns, Water Research, Vol. 40, No. 6, pp. 1155-1166. https://doi.org/10.1016/j.watres.2006.01.005
  21. Maymo-Gatell, X., Yueh-tyng Chien, Gossett, J. M. and Zinder, S. H.(1997), Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene, Science, Vol. 276, No. 5318, pp. 1568-1571. https://doi.org/10.1126/science.276.5318.1568
  22. Middeldorp, P. J. M, Luijtena, M. L. G. C., Pasa, B. A., Eekerta, M. H. A., Kengena, S. W. M, Schraaa, G. and Stamsa, A. J. M.(1999), Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes, Bioremediation Journal, Vol. 3, No. 3, pp. 151-169. https://doi.org/10.1080/10889869991219280
  23. Semprini, L.(1997), Strategies for the Aerobic Co-metabolismof Chlorinated Solvents, Curr. Opin. Biotechnol, Vol.8, No. 3, pp. 296-308. https://doi.org/10.1016/S0958-1669(97)80007-9
  24. Shim, H., Ryoo, D., Barbieri, P. and Wood, T. K.(2001), Aerobic Degradation of Mixtures of Tetrachloroethylene, Trichloroethylene, Dichloroethylenes, and Vinyl Chloride by Toluene-o-xylene Monooxygenase of Pseudomonas Stutzeri OX1, Applied Microbiology and Biotechnology, Vol. 56, No. 1-2, pp. 266-269.
  25. Stevens, T. O. and Tiedje, J. M.(1999), Carbon Dioxide Fixation and Mixotrophic Metabolism by Strain DCB-1, a Dehalogenating Anaerobic Bacterium. Applied and Evironmenta, Applied and Environmental Microbiology, Vol. 54, No. 12, pp. 2944-2948.
  26. Sung, Y. B., Fletcher, K. E., Ritalahti, K. M., Apkarian, R. P., Ramos-Hernandez, .N, Sanford, R. A., Mesbah, N. A. and Loffler. F. E.(2006), Geobacter Lovleyi sp. Nov. Strain SZ, a Novel Metal-Reducing and Tetrachloroethene- Dechlorinating Bacterium, Applied Microbiology and Biotechnology, Vol. 72, No.4, pp. 2775-2782.
  27. Thauer, R. K., Jungermann, K. and Decker, K.(1977), Energy Conservation in Chemotrophic Anaerobic Bacteria, Bacteriological Review, Vol. 41, No. 1, pp. 100-180.
  28. Yang, Y. and McCarty, P. L.(1998), Competition for Hydrogen within a Chlorinated Solvent Dehalogenating Anaerobic Mixed Culture, Environ Sci Technol, Vol. 32, No. 22, pp. 3591-3597. https://doi.org/10.1021/es980363n
  29. Yang, Y. and McCarty, P. L.(2000), Biologically Enhanced Dissolution of Tetrachloroethene DNAPL, Environ. Sci. Technol., Vol 56, No. 1-2, pp. 265-269.
  30. Yeh, C. K., Wu, H. M., and Chen, T. C.(2003), Chemical Oxidation of Chlorinated Non-aqueous Phase Liquid by Hydrogen Peroxide in Natural Sand Systems, Journal of Hazardous Materials, Vol. 96, No. 1, pp. 29-51. https://doi.org/10.1016/S0304-3894(02)00147-4
  31. Yu, S. H. and Semprini L.(2009), Enhanced Reductive Dechlorination of PCE DNAPL with TBOS as a Slow-release Electron Donor, Jounal of Hazardous Materials, Vol. 167, No. 1-3, pp. 97-104. https://doi.org/10.1016/j.jhazmat.2008.12.087
  32. Yu, S. H. and Semprini, L.(2002), Comparison of Trichloroethylene Reductive Dehalogenation by Microbial Communities Stimulated on Silicon-based Organic Compounds as Slow-release Anaerobic Substrates, Water Research, Vol. 36, No. 20, pp. 4985-4996. https://doi.org/10.1016/S0043-1354(02)00222-1
  33. Zhao, J., Fang, Y., Scheibe, T. D., Lovley, D. R. and Mahadevan, R.(2010), Modeling and Sensitivity Analysis of Electron Capacitance for Geobacter in Sedimentary Environments, Journal of Contaminant Hydrology, Vol. 112, No. 1-4, pp. 30-44. https://doi.org/10.1016/j.jconhyd.2009.10.002