SPECIAL WEAK PROPERTIES OF
GENERALIZED POWER SERIES RINGS

LUNQUN OUYANG

Abstract. Let R be a ring and $\text{nil}(R)$ the set of all nilpotent elements of R. For a subset X of a ring R, we define $N_R(X) = \{a \in R \mid xa \in \text{nil}(R)$ for all $x \in X\}$, which is called a weak annihilator of X in R. A ring R is called weak zip provided that for any subset X of R, if $N_R(X) \subseteq \text{nil}(R)$, then there exists a finite subset $Y \subseteq X$ such that $N_R(Y) \subseteq \text{nil}(R)$, and R is called weak symmetric if $abc \in \text{nil}(R) \Rightarrow acb \in \text{nil}(R)$ for all $a, b, c \in R$. It is shown that a generalized power series ring $[R^S, \leq]$ is weak zip (resp. weak symmetric) if and only if R is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[R^S, \leq]$ in terms of all weak associated primes of R in a very straightforward way.

1. Introduction

All rings considered here are associative with identity. Any concept and notation not defined here can be founded in Ribenboim [17-19], Elliott and Ribenboim [6], and L. Ouyang [15-16].

Let (S, \leq) be an ordered set. Recall that (S, \leq) is Artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0. The following definition is due to Elliott and Ribenboim [6].

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s', t \in S$ and $s < s'$, then $s + t < s' + t$), and R a ring. Let $[R^S, \leq]$ be the set of all maps $f : S \rightarrow R$ such that $\text{supp}(f) = \{s \in S \mid f(s) \neq 0\}$ is Artinian and narrow. With pointwise addition,
$[[R^S_\leq]]$ is an abelian additive group. For every $s \in S$ and f, $g \in [[R^S_\leq]]$, let $X_s(f, g) = \{(u, v) \in S \times S \mid u + v = s, f(u) \neq 0, g(v) \neq 0\}$. It follows from [18, Section 4.1] that $X_s(f, g)$ is finite. This fact allows to define the operation of convolution:

$$(fg)(s) = \sum_{(u, v) \in X_s(f, g)} f(u)g(v).$$

With this operation of convolution, and pointwise addition, $[[R^S_\leq]]$ becomes a ring (see [11-13] or [17-19]), which is called the generalized power series ring. The elements of $[[R^S_\leq]]$ are called generalized power series with coefficients in R and exponents in S.

For example, let \mathbb{N} denote the set of positive integers. If $S = \mathbb{N} \cup \{0\}$ and \leq is the usual order, then $[[R^{\mathbb{N} \cup \{0\}, \leq}]] \cong R[[x]]$, the usual ring of power series. If S is a commutative monoid and \leq is the trivial order, then $[[R^S_\leq]] \cong R[S]$, the monoid-ring of S over R. Let (S, \leq) be a strictly totally ordered monoid, which is also Artinian. For any $s \in S$, set $X_s =\{(u, v) \mid u + v = s, u, v \in S\}$. Then from [18, Section 4.1], it follows that X_s is a finite set. Let V be a free abelian additive group with the base consisting of elements of S. Then V is a coalgebra over \mathbb{Z} with the comultiplication map and the counit map as following:

$$\Delta(s) = \sum_{(u, v) \in X_s} u \otimes v, \quad \varepsilon(s) = \begin{cases} 1, & s = 0 \\ 0, & s \neq 0. \end{cases}$$

Clearly $[[R^S_\leq]] \cong \text{Hom}(V, R)$-the dual algebra.

Further examples and some properties of $[[R^S_\leq]]$ are given in [11-13] and [17-19].

Let $s \in S$, $r \in R$. We define $C^s_r \in [[R^S_\leq]]$ as follows:

$$C^s_r(s) = r, \quad C^s_r(t) = 0 \quad (s \neq t \in S).$$

Let $[[R^S_\leq]]$ be the generalized power series ring over R. Then R is canonically embedded as a subring of $[[R^S_\leq]]$, and for each $f \in [[R^S_\leq]]$, and $r \in R$, $f \cdot r = f \cdot C^0_r$.

Given a ring R we use $\text{nil}(R)$ to denote the set of all nilpotent elements of R. For a subset X of R, $r_X(X) = \{a \in R \mid Xa = 0\}$ and $l_X(X) = \{a \in R \mid aX = 0\}$ will stand for the right and left annihilator of X in R respectively. Due to Marks [14], a ring R is called NI if $\text{nil}(R)$ forms an ideal. A ring R is called reduced if it has no nonzero nilpotent elements, and a ring R is called semicommutative if for all $a, b \in R$, $ab = 0$ implies $aRb = 0$. An ideal $I \subseteq R$ is said to be nilpotent if $I^n = 0$ for some natural number n.

In recent years, Ribenboim [17-19] and Zhongkui Liu [11-13] have carried out an extensive study of generalized power series rings. In this note we continue the study of generalized power series rings. Firstly, as a generalization of the right (left) annihilator, we introduce a notion of a weak annihilator of a subset in a ring. Next, we investigate various weak annihilator properties of the rings of generalized power series. Consequently, several known results
such as Ribenboim [17, 3.4] and Scott Annin [2, Theorem 5.2] and Hirano [8, Proposition 3.1] are generalized to a more general setting.

2. On weak annihilator

In this section, we first briefly develop the definition of the weak annihilator of a subset in a ring \(R \). Also we provide several basic results. Next we discuss some weak annihilator properties of generalized power series rings.

Definition 2.1. Let \(R \) be a ring. For a subset \(X \) of the ring \(R \), we define \(\mathit{N}_R(X) = \{ a \in R \mid xa \in \mathit{nil}(R) \text{ for all } x \in X \} \), which is called a weak annihilator of \(X \) in \(R \). If \(X \) is singleton, say \(X = \{ r \} \), we use \(\mathit{N}_R(r) \) in place of \(\mathit{N}_R(\{ r \}) \).

Obviously, for any subset \(X \) of a ring \(R \), \(\mathit{N}_R(X) = \{ a \in R \mid xa \in \mathit{nil}(R) \text{ for all } x \in X \} = \{ b \in R \mid bx \in \mathit{nil}(R) \text{ for all } x \in X \}, r_R(X) \subseteq \mathit{N}_R(X) \) and \(l_R(X) \subseteq \mathit{N}_R(X) \). For example, let \(\mathbb{Z} \) be the ring of integers and \(T_2(\mathbb{Z}) \) the \(2 \times 2 \) upper triangular matrix ring over \(\mathbb{Z} \). We consider the subset \(X = \{(\begin{smallmatrix} a & b \\ 0 & 0 \end{smallmatrix}) \} \). Then \(r_{T_2(\mathbb{Z})}(X) = l_{T_2(\mathbb{Z})}(X) = \mathbb{Z} \), \(\mathit{N}_{T_2(\mathbb{Z})}(X) = \{ \begin{smallmatrix} 0 & 0 \\ 0 & m \end{smallmatrix} \mid m \in \mathbb{Z} \} \). Thus \(r_{T_2(\mathbb{Z})}(X) \subseteq \mathit{N}_{T_2(\mathbb{Z})}(X) \) and \(l_{T_2(\mathbb{Z})}(X) \subseteq \mathit{N}_{T_2(\mathbb{Z})}(X) \). If \(R \) is reduced, then \(r_R(X) = \mathit{N}_R(X) = l_R(X) \) for any subset \(X \) of \(R \). It is easy to see that for any subset \(X \subseteq R \), \(\mathit{N}_R(X) \) is an ideal of \(R \) in case \(\mathit{nil}(R) \) is an ideal.

Proposition 2.2. Let \(X, Y \) be subsets of \(R \). Then we have the following:

1. \(X \subseteq Y \) implies \(\mathit{N}_R(X) \supseteq \mathit{N}_R(Y) \).
2. \(X \subseteq \mathit{N}_R(N_R(X)) \).
3. \(\mathit{N}_R(X) = \mathit{N}_R(\mathit{N}_R(N_R(X))) \).

Proof. (1) and (2) are easy.

(3) Applying (2) to \(\mathit{N}_R(X) \), we obtain \(\mathit{N}_R(X) \subseteq \mathit{N}_R(\mathit{N}_R(N_R(X))) \). Since \(X \subseteq \mathit{N}_R(N_R(X)) \), we have \(\mathit{N}_R(X) \supseteq \mathit{N}_R(\mathit{N}_R(N_R(X))) \) by (1). Therefore we get \(\mathit{N}_R(X) = \mathit{N}_R(\mathit{N}_R(N_R(X))) \). \(\square \)

Proposition 2.3. Let \(R \) be a subring of \(S \). Then for any subset \(X \) of \(R \), we have \(\mathit{N}_R(X) = \mathit{N}_S(X) \cap R \).

Proof. Let \(r \in \mathit{N}_R(X) \). Then \(r \in R \) and \(xr \in \mathit{nil}(R) \) for each \(x \in X \), and so \(xr \in \mathit{nil}(S) \) for each \(x \in X \). Hence \(r \in \mathit{N}_S(X) \cap R \) and so \(\mathit{N}_R(X) \subseteq \mathit{N}_S(X) \cap R \). Assume that \(a \in \mathit{N}_S(X) \cap R \). Then \(a \in R \) and \(xa \in \mathit{nil}(S) \) for each \(x \in X \). Note that \(X \subseteq R \). We have \(xa \in \mathit{nil}(R) \) for each \(x \in X \). Thus \(a \in \mathit{N}_R(X) \) and so \(\mathit{N}_R(X) \supseteq \mathit{N}_S(X) \cap R \). Therefore \(\mathit{N}_R(X) = \mathit{N}_S(X) \cap R \). \(\square \)

Lemma 2.4. Let \(R \) be an \(NI \) ring and \(a, b \in R \). Then \(ab \in \mathit{nil}(R) \) implies \(arb \in \mathit{nil}(R) \) for every \(r \in R \).

Proof. Since \(\mathit{nil}(R) \) of an \(NI \) ring is an ideal, for every \(r \in R \), \(ab \in \mathit{nil}(R) \Rightarrow ba \in \mathit{nil}(R) \Rightarrow bar \in \mathit{nil}(R) \Rightarrow arb \in \mathit{nil}(R) \). \(\square \)
Proposition 2.5. Let R be an NI ring and nil(R) nilpotent, S a cancellative torsion-free monoid, (S, \leq) a strict order on S and $f \in [[R^S, \leq]]$. Then $f \in \text{nil}([[R^S, \leq]])$ if and only if $f(s) \in \text{nil}(R)$ for every $s \in S$.

Proof. (⇒) Observe that $R/\text{nil}(R)$ is reduced and hence S-Armendariz in the sense of whenever $f, g \in [[R^S, \leq]]$ satisfy $fg = 0$, then $f(u)g(v) = 0$ for any $u, v \in S$ by [13, Lemma 3.1]. Suppose that $f^k = 0$ for some positive integer k. Then if we denote by \overline{f} the corresponding generalized power series of f in $[[R/\text{nil}(R)^S, \leq]]$, $\overline{f}^k = 0$. Since $R/\text{nil}(R)$ is S-Armendariz, $\overline{f(s)}^k = 0$ for any $s \in S$ by [13, Proposition 3.2]. Hence $f(s) \in \text{nil}(R)$ for any $s \in S$.

(⇐) Assume that $f(s) \in \text{nil}(R)$ for every $s \in S$. Then $f \in [[\text{nil}(R)^S, \leq]]$ where $[[\text{nil}(R)^S, \leq]] = \{f \in [[R^S, \leq]] \mid f(s) \in \text{nil}(R), s \in S\}$ is an ideal of $[[R^S, \leq]]$. Since nil(R) is nilpotent, there exists some positive integer k such that $(\text{nil}(R))^k = 0$. Then it is easy to see that $([[\text{nil}(R)^S, \leq]])^k = 0$. Hence we obtain $f^k = 0$. Therefore $f \in \text{nil}([[R^S, \leq]])$. □

Following Proposition 2.5, we obtain that if R is an NI ring and nil(R) nilpotent, S a cancellative torsion-free monoid, (S, \leq) a strict order on S, then the generalized power series ring $[[R^S, \leq]]$ is an NI ring and $\text{nil}([[R^S, \leq]]) = [[\text{nil}(R)^S, \leq]]$.

It was proved in Ribenboim [17, 3.3] that if R is a Noetherian commutative ring, (S, \leq) a cancellative torsion-free strictly ordered monoid and $f \in [[R^S, \leq]]$, then $f \in \text{nil}([[R^S, \leq]])$ if and only if $f(s) \in \text{nil}(R)$ for all $s \in S$. In the following, we show that the same is true even if R is noncommutative.

Corollary 2.6. Let R be a right Noetherian semicommutative ring, (S, \leq) a cancellative torsion-free strictly ordered monoid and $f \in [[R^S, \leq]]$. Then $f \in \text{nil}([[R^S, \leq]])$ if and only if $f(s) \in \text{nil}(R)$ for all $s \in S$.

Proof. It suffices to show that nil(R) is nilpotent. Since R is a right Noetherian ring, we can find $a_1, a_2, \ldots, a_n \in \text{nil}(R)$ such that nil(R) is generated by a_1, a_2, \ldots, a_n. Let $k \geq 1$ be such that $a_i^k = 0$ for all $1 \leq i \leq n$. We claim that nil$(R)^n = 0$. Consider a product

$$(a_1r_{11} + a_2r_{12} + \cdots + a_n r_{1n}) \cdots (a_1r_{nk+1,1} + a_2r_{nk+1,2} + \cdots + a_n r_{nk+1,n})$$

of $nk + 1$ elements in nil(R). When this product is expanded, each term in it is a product of $2(nk + 1)$ elements, $nk + 1$ elements from the set $\{a_1, a_2, \ldots, a_n\}$, and $nk + 1$ elements from the set $\{r_{ij} \mid 1 \leq i \leq nk + 1, 1 \leq j \leq n\}$. Consider each term

$$a_{v_1}r_{v_1}a_{v_2}r_{v_2} \cdots a_{v_{nk+1}}r_{v_{nk+1}},$$

where $a_{v_1}, a_{v_2}, \ldots, a_{v_{nk+1}} \in \{a_1, a_2, \ldots, a_n\}$ and $r_{v_j} \in R$ for all $1 \leq j \leq nk + 1$. We will show that

$$a_{v_1}r_{v_1}a_{v_2}r_{v_2} \cdots a_{v_{nk+1}}r_{v_{nk+1}} = 0.$$

If the number of a_1 in $a_{v_1}r_{v_1}a_{v_2}r_{v_2} \cdots a_{v_{nk+1}}r_{v_{nk+1}}$ is greater than k, then we can write

$$a_{v_1}r_{v_1}a_{v_2}r_{v_2} \cdots a_{v_{nk+1}}r_{v_{nk+1}}.$$
as

\[b_1a_1^{j_1}b_2a_2^{j_2} \cdots b_pa_p^{j_p}b_{p+1}, \]

where \(j_1 + j_2 + \cdots + j_p > k \) and \(b_i \in R \) for all \(1 \leq q \leq p + 1 \). Since \(R \) is a semicommutative ring and \(a_1^{j_1+j_2+\cdots+j_p} = 0 \), it is easy to see that \(b_1a_1^{j_1}b_2a_2^{j_2} \cdots b_pa_p^{j_p}b_{p+1} = 0 \), and so \(a_1r_{v_1}a_2r_{v_2} \cdots a_{v_{n+k+1}}r_{v_{n+k+1}} = 0 \). If the number of \(a_i \) in \(a_1r_{v_1}a_2r_{v_2} \cdots a_{v_{n+k+1}}r_{v_{n+k+1}} \) is greater than \(k \), then similar discuss yields that \(a_1r_{v_1}a_2r_{v_2} \cdots a_{v_{n+k+1}}r_{v_{n+k+1}} = 0 \). Thus each term is zero, and so

\[(a_1r_1 + a_2r_2 + \cdots + a_n r_{1n}) \cdots (a_1r_{(nk+1)} + a_2r_{(nk+1)} + a_2r_{(nk+1)} + \cdots + a_n r_{(nk+1)n}) = 0.\]

Therefore nil(R) is nilpotent, as required. □

Proposition 2.7. Let \(R \) be an NI ring and nil(R) nilpotent, \((S, \leq)\) a cancellative torsion-free strictly ordered monoid, \(f, g, h \in [\langle R^S, \leq \rangle] \) and \(r \in R \). Then we have the following:

1. \(fg \in \text{nil}([\langle R^S, \leq \rangle]) \iff f(u)g(v) \in \text{nil}(R) \) for all \(u, v \in S \).
2. \(fgr = fgC_0^h \in \text{nil}([\langle R^S, \leq \rangle]) \iff f(u)g(v)r \in \text{nil}(R) \) for all \(u, v \in S \).
3. \(fgR \in \text{nil}([\langle R^S, \leq \rangle]) \iff f(u)g(v)h(w) \in \text{nil}(R) \) for all \(u, v, w \in S \).

Proof.

1. Suppose that \(fg \in \text{nil}([\langle R^S, \leq \rangle]) \). Then \(fg \in [\text{nil}(R)[S, \leq]] \) by Proposition 2.5. Thus \(f g = \bar{0} \) where \(f, g \) are the corresponding generalized power series of \(f, g \) in \([\langle R/\text{nil}(R)[S, \leq]\rangle] \). Since \(R/\text{nil}(R) \) is S-Armendariz, \(f(u)g(v) = 0 \) for any \(u, v \in S \). Hence \(f(u)g(v) \in \text{nil}(R) \) for any \(u, v \in S \). Conversely, let \(f, g \in [\langle R^S, \leq \rangle] \) be such that \(f(u)g(v) \in \text{nil}(R) \) for any \(u, v \in S \). Then \((fg)(s) \in \text{nil}(R) \) since \(\text{nil}(R) \) is an ideal of \(R \). Hence \(fg \in \text{nil}([\langle R^S, \leq \rangle]) \) by Proposition 2.5.

2. (⇒) Suppose that \(fgC_0^h = f(gC_0^h) \in \text{nil}([\langle R^S, \leq \rangle]) \). Then for any \(u, v \in S \), by (1), we obtain \(f(u)(gC_0^h)(v) = f(u)g(v)r \in \text{nil}(R) \).

(⇐) Suppose that \(f(u)g(v)r \in \text{nil}(R) \) for all \(u, v \in S \). We show that \(fgr = f(gC_0^h) \in \text{nil}([\langle R^S, \leq \rangle]) \). For any \(s \in S \), we have

\[(fgC_0^h)(s) = \sum_{(u,v) \in X_s(f,g)} f(u)g(v)r, \]

and \(f(u)g(v)r \in \text{nil}(R) \) for all \(u, v \in S \) implies that \((fgC_0^h)(s) \in \text{nil}(R) \). Thus by Proposition 2.5, \(fgC_0^h \in \text{nil}([\langle R^S, \leq \rangle]) \).

3. It suffices to show (⇒). Suppose that \(fgh \in \text{nil}([\langle R^S, \leq \rangle]) \). Then from \(fgh = (fg)h \in \text{nil}([\langle R^S, \leq \rangle]) \), it follows that \((fg)h \in \text{nil}(R) \) for each \(p, w \in S \). Now consider \((fg)C_0^h \). Since \(\text{supp}(C_0^h) = \{0\} \) and \(C_0^h(0) = h(w) \), thus, by (1), we obtain \((fg)C_0^h \in \text{nil}([\langle R^S, \leq \rangle]) \) for each \(w \in S \). Now by (2), we obtain \(f(u)g(v)h(w) \in \text{nil}(R) \) for all \(u, v, w \in S \). □

Corollary 2.8. Let \(R \) be a right Noetherian semicommutative ring, \((S, \leq)\) a cancellative torsion-free strictly ordered monoid, \(f, g, h \in [\langle R^S, \leq \rangle] \) and \(r \in R \). Then we have the following:

1. \(fg \in \text{nil}([\langle R^S, \leq \rangle]) \iff f(u)g(v) \in \text{nil}(R) \) for all \(u, v \in S \).
(2) \(fgr = fgC^0 \in \text{nil}([[R^{S \leq}]])) \iff f(u)g(v)r \in \text{nil}(R) \text{ for all } u, v \in S. \)

(3) \(fgh \in \text{nil}([[R^{S \leq}]])) \iff f(u)g(v)h(w) \in \text{nil}(R) \text{ for all } u, v, w \in S. \)

Proof. By analogy with the proof of Proposition 2.7, we can complete the proof. \(\square \)

Hirano observed relations between annihilators in a ring \(R \) and annihilators in \(R[x] \) (see [8]). In this note, we investigate the relations between weak annihilators in a ring \(R \) and weak annihilators in \([[R^{S \leq}]] \). Given a ring \(R \), we define

\[
\text{NAnn}_R(2^R) = \{N_R(U) \mid U \subseteq R\},
\]

and

\[
\text{NAnn}_{[[R^{S \leq}]]}(2^{[[R^{S \leq}]]}) = \{N_{[[R^{S \leq}]]}(V) \mid V \subseteq [[R^{S \leq}]]\}.
\]

For a generalized power series \(f \in [[R^{S \leq}]] \), let \(C_f \) denote the set \(\{f(s) \mid s \in S\} \)
and for a subset \(V \) of \([[R^{S \leq}]] \), let \(C_V \) denote the set \(\cup_{f \in V} C_f \).

Given a subset \(U \subseteq R \), let \([[U^{S \leq}]] \) denote the set \(\{f \in [[R^{S \leq}]] \mid f(s) \in U, s \in S\} \). Then we can construct a map

\[
\phi : \text{NAnn}_R(2^R) \longrightarrow \text{NAnn}_{[[R^{S \leq}]]}(2^{[[R^{S \leq}]]})
\]

defined by \(\phi(N_R(U)) = N_{[[R^{S \leq}]]}([[U^{S \leq}]])) \text{ for any } N_R(U) \in \text{NAnn}_R(2^R). \)

Proposition 2.9. Let \(R \) be an NI ring and \(\text{nil}(R) \) nilpotent, \((S, \leq) \) a cancellative torsion-free strictly ordered monoid. Then

\[
\phi : \text{NAnn}_R(2^R) \longrightarrow \text{NAnn}_{[[R^{S \leq}]]}(2^{[[R^{S \leq}]]})
\]

defined by \(\phi(N_R(U)) = N_{[[R^{S \leq}]]}([[U^{S \leq}]])) \text{ for any } N_R(U) \in \text{NAnn}_R(2^R) \) is bijective.

Proof. We show that \(\phi \) is injective. Suppose \(N_R(U) \in \text{NAnn}_R(2^R), N_R(U') \in \text{NAnn}_R(2^R) \) and \(N_R(U) \neq N_R(U') \). Without loss of generality, we may assume that there exists \(r \in R \) such that \(r \in N_R(U) \), and \(r \notin N_R(U') \). Then it is easy to see that \(C^0_r \in N_{[[R^{S \leq}]]}([[U^{S \leq}]])) \) and \(C^0_r \notin N_{[[R^{S \leq}]]}([[U'^{S \leq}]])) \), and so \(N_{[[R^{S \leq}]]}([[U^{S \leq}]])) \neq N_{[[R^{S \leq}]]}([[U'^{S \leq}]])) \). Hence \(\phi(N_R(U)) \neq \phi(N_R(U')). \)

Therefore \(\phi \) is injective.

Now we show that \(\phi \) is surjective. For any

\[
N_{[[R^{S \leq}]]}(V) \in \text{NAnn}_{[[R^{S \leq}]]}(2^{[[R^{S \leq}]]}), \quad V \subseteq [[R^{S \leq}]],
\]

then \(N_R(C_V) \in \text{NAnn}_R(2^R) \). To show \(\phi \) is surjective, it suffices to show

\[
\phi(N_R(C_V)) = N_{[[R^{S \leq}]]}([[C_V^{S \leq}]])) = N_{[[R^{S \leq}]]}(V).
\]

Since \(V \subseteq [[[C_V^{S \leq}]], N_{[[R^{S \leq}]]}([[C_V^{S \leq}]])) \subseteq N_{[[R^{S \leq}]]}(V) \text{ is clear. Now we show that } N_{[[R^{S \leq}]]}(V) \subseteq N_{[[R^{S \leq}]]}([[C_V^{S \leq}]]). \)

Assume that \(f \in N_{[[R^{S \leq}]]}(V) \). Then \(gf \in \text{nil}([[R^{S \leq}]])) \) for all \(g \in V \). By Proposition 2.7, we obtain \(g(u)f(v) \in \text{nil}(R) \text{ for all } u, v \in S \), and so \(f(v) \in N_R(C_V) \) for every \(v \in S \). Then for each \(h \in [[[C_V^{S \leq}]], \text{by Proposition 2.7, it is easy to see that } h(f) \in \text{nil}([[R^{S \leq}]])), \)
and so \(f \in N[R^S;\leq][[[C_V];S;\leq]]. \) Hence \(N[R^S;\leq][V] \subseteq N[R^S;\leq][[[C_V];S;\leq]]. \) Therefore \(N[R^S;\leq][V] = N[R^S;\leq][[[C_V];S;\leq]] = \phi(N_{R}(C_V)), \) as required. \(\square \)

A ring \(R \) is called right zip if \(rR(Y) = 0 \) is weak zip provided that the right annihilator \(rR(X) \) of a subset \(X \) of \(R \) is zero, then there exists a finite subset \(Y \) of \(R \), such that \(rR(Y) = 0 \). Beachy and Blair [4] showed that if \(R \) is a commutative zip ring, then the polynomial ring \(R[x] \) over \(R \) is a zip ring. Hong et al. [9, Theorem 11] proved that \(R \) is a right (left) zip ring if and only if \(R[x] \) is a right (left) zip ring when \(R \) is an Armendariz ring. As a generalization of zip rings, in [15], L. Ouyang introduced the notion of weak zip rings and showed that if \(R \) is an \((\alpha,\delta)\)-compatible and reversible ring, then \(R \) is weak zip if and only if the Ore extension \(R[x;\alpha,\delta] \) is weak zip. In the following, we investigate the weak zip property of rings of generalized power series.

Definition 2.10. A ring \(R \) is called a weak zip ring provided that for any subset \(X \) of \(R \), if \(N_{R}(X) \subseteq \text{nil}(R) \), then there exists a finite subset \(Y \subseteq X \) such that \(N_{R}(Y) \subseteq \text{nil}(R) \).

Obvioulsy, all reduced zip rings are weak zip, and if \(R \) is a weak zip ring, then so is the \(n \times n \) upper triangular matrix ring over \(R \). Further examples and some properties of weak zip rings are given in [15].

Proposition 2.11. Let \(R \) be an NI ring and \(\text{nil}(R) \) nilpotent, \((S,\leq)\) a cancellative torsion-free strictly ordered monoid. Then \(R \) is weak zip if and only if \([[R^S;\leq]] \) is weak zip.

Proof. Assume that \(R \) is weak zip and \(V \) a subset of \([[R^S;\leq]] \) with \(N[[R^S;\leq]][V] \subseteq \text{nil}([[R^S;\leq]]). \) Now we show that \(N_{R}(C_{V}) \subseteq \text{nil}(R) \). If \(r \in N_{R}(C_{V}) \), then \(ar \in \text{nil}(R) \) for all \(a \in C_{V} \). So for any \(f \in V \) and any \(s \in S, \)

\[
(fr)(s) = (fC_{v}^{a})(s) = f(s)r \in \text{nil}(R),
\]

and so by Proposition 2.5, \(fr \in \text{nil}([[R^S;\leq]]). \) Hence

\[
r \in N[[R^S;\leq]][V] \subseteq \text{nil}([[R^S;\leq]]).
\]

Thus \(r \in \text{nil}(R) \) and this implies \(N_{R}(C_{V}) \subseteq \text{nil}(R) \). Since \(R \) is weak zip, there exists a finite subset \(Y_0 = \{ q_1, \ldots, q_m \} \subseteq C_V \), such that \(N_{R}(Y_0) \subseteq \text{nil}(R) \). Let \(f_i \) be an element of \(V \) such that \(f_i(q_i) = q_i \) for some \(q_i \in S, \) \(i = 1,2,\ldots,m \). Let \(V_0 = \{ f_1, f_2, \ldots, f_m \}. \) Then \(V_0 \) is a finite subset of \(V \), and \(C_{V_0} \supseteq Y_0 \). So \(N_{R}(C_{V_0}) \subseteq N_{R}(Y_0) \subseteq \text{nil}(R) \). Now we show that \(N[[R^S;\leq]][V_0] \subseteq \text{nil}([[R^S;\leq]]). \) Suppose \(g \in N[[R^S;\leq]][V_0] \). Then \(fg \in \text{nil}([[R^S;\leq]]) \) for all \(f \in V_0 \). By Proposition 2.7, we obtain \(f(u)g(v) \in \text{nil}(R) \) for all \(u, v \in S \). Hence \(g(v) \in N_{R}(C_{V_0}) \subseteq \text{nil}(R) \) for all \(v \in S \), and so by Proposition 2.5, \(g \in \text{nil}([[R^S;\leq]]). \) Hence \(N[[R^S;\leq]][V_0] \subseteq \text{nil}([[R^S;\leq]]). \) Therefore \([[R^S;\leq]] \) is weak zip.

Conversely, let \(Y \subseteq R \) with \(N_{R}(Y) \subseteq \text{nil}(R) \). If \(f \in N[[R^S;\leq]][Y] \), then \(gf = C_{v}^{a}f \in \text{nil}([[R^S;\leq]]) \) for all \(g \in Y \), and so \(gf(s) \in \text{nil}(R) \) for all \(y \in Y \), and \(s \in S \). Thus \(f(s) \in N_{R}(Y) \subseteq \text{nil}(R) \) for all \(s \in S \). By Proposition 2.5,
f ∈ nil([[R^{S,≤}]])). Hence N_{[[R^{S,≤}]]}(Y) ⊆ nil([[R^{S,≤}]])). Since [[R^{S,≤}]] is weak
zip, there exists a finite subset Y_0 ⊆ Y such that N_{[[R^{S,≤}]]}(Y_0) ⊆ nil([[R^{S,≤}]])).
Hence N_R(Y_0) = N_{[[R^{S,≤}]]}(Y_0) ∩ R ⊆ nil([[R^{S,≤}]]) ∩ R = nil(R). Therefore R
is weak zip.

Following Lambek [10], a ring R is called symmetric if abc = 0 implies
acb = 0 for all a, b, c ∈ R. It is obvious that commutative rings are symmetric.
Reduced rings are symmetric by the results of Anderson and Camillo [1], but
there are many nonreduced commutative (so symmetric) rings. As a general-
ization of symmetric rings, L. Ouyang introduced the notion of weak symmetric
rings and showed that if R is an (α, δ)-compatible and reversible ring, then R
is weak symmetric if and only if the Ore extension R[x; α, δ] is weak symmetric
[16]. In the following, we investigate the weak symmetric property of the rings
of generalized power series.

Definition 2.12. A ring R is called a weak symmetric ring if abc ∈ nil(R) ⇒
acb ∈ nil(R) for all a, b, c ∈ R.

Proposition 2.13. Let R be an NI ring and nil(R) nilpotent, (S, ≤) a can-
cellative torsion-free strictly ordered monoid. Then R is weak symmetric if and
only if [[R^{S,≤}]] is weak symmetric.

Proof. Since any subring of a weak symmetric ring is again a weak symmetric
ring, it suffices to show that if R is a weak symmetric ring, then so is [[R^{S,≤}]].
Let f, g, h ∈ [[R^{S,≤}]] be such that fgh ∈ nil([[R^{S,≤}]]). By Proposition 2.7, we
have f(ug)vbh(w) ∈ nil(R) for all u, v, w ∈ S, and so f(u)h(2w)g(v) ∈ nil(R)
for all u, v, w ∈ S since R is weak symmetric. Hence fgh ∈ nil([[R^{S,≤}]]). By
Proposition 2.7. Therefore [[R^{S,≤}]] is a weak symmetric ring.

The following corollary will give more examples of weak zip rings and weak
symmetric rings.

Corollary 2.14. Let (S_1, ≤_1), (S_2, ≤_2), . . . , (S_n, ≤_n) be cancellative torsion-
free strictly ordered monoids. Denote by (lex ≤) and (revlex ≤) the lexi-
ographic order, the reverse lexicographic order, respectively, on the monoid
S_1 × S_2 × · · · × S_n. If R is an NI ring and nil(R) nilpotent, then we have the
following:

1. R is weak zip ⇔ [[R^{S_1 × S_2 × · · · × S_n,(lex ≤)}]] is weak zip.
2. R is weak zip ⇔ [[R^{S_1 × S_2 × · · · × S_n,(revlex ≤)}]] is weak zip.
3. R is weak symmetric ⇔ [[R^{S_1 × S_2 × · · · × S_n,(lex ≤)}]] is weak symmetric.
4. R is weak symmetric ⇔ [[R^{S_1 × S_2 × · · · × S_n,(revlex ≤)}]] is weak symmetric.

Proof. It is easy to see that (S_1 × S_2 × · · · × S_n,(lex ≤)) and (S_1 × S_2 × · · · ×
S_n,(revlex ≤)) are cancellative torsion-free strictly ordered monoids. There-
fore we complete the proofs of (1), (2) by Proposition 2.11, and (3), (4) by
Proposition 2.13.
3. Weak associated primes

Given a right \(R \)-module \(N_R \), the right annihilator of \(N_R \) is denoted by
\[r_R(N_R) = \{ a \in R \mid Na = 0 \}. \]
We say that \(N_R \) is prime if \(N_R \neq 0 \) and
\[r_R(N_R) = r_R(N'_R) \]
for every nonzero submodule \(N'_R \subseteq N_R \) (see [2], [3]). Let
\(M_R \) be a right \(R \)-module, an ideal \(\varphi \) of \(R \) is called an associated prime of \(M_R \) if there exists a prime submodule \(N_R \subseteq M_R \) such that
\[\varphi = r_R(N_R). \]
The set of associated primes of \(M_R \) is denoted by \(\text{Ass}(M_R) \) (see [2], [3]). Associated primes are well-known in commutative algebra for their important role in the primary decomposition, and has attracted a lot of attention in recent years. In [5], Brewer and Heinzer used localization theory to prove that, over a commutative ring \(R \), the associated primes of the polynomial ring \(R[x] \) (viewed as a module over itself) are all extended: that is, every \(\varphi \in \text{Ass}(R[x]) \) may be expressed as \(\varphi = \varphi_0[x] \), where \(\varphi_0 = \varphi \cap R \in \text{Ass}(R) \). Using results of R. C. Shock in [20] on good polynomials, C. Faith has provided a new proof in [7] of the same result which does not rely on localization or other tools from commutative algebra. In [3], Scott Annin showed that Brewer and Heinzer’s result still holds in the more general setting of a polynomial module \(M[x] \) over an Ore extension ring \(R[x; \alpha, \delta] \), with possibly noncommutative base \(R \). So the properties of associated primes over a commutative ring can be profitably generalized to a noncommutative setting as well.

Motivated by the results in [2], [3], [7], [20], in this section, we first introduce the notion of weak associated primes, which is a generalization of associated primes. We next describe all weak associated primes of the generalized power series ring \(R^S \) in terms of the weak associated primes of the ring \(R \).

Definition 3.1. Let \(I \) be a right ideal of a nonzero ring \(R \). We say that \(I \) is an \(R \)-prime ideal if \(I \not\subseteq \text{nil}(R) \) and \(N_R(I) = N_R(I') \) for every right ideal \(I' \subseteq I \) and \(I' \not\subseteq \text{nil}(R) \).

Definition 3.2. Let \(\text{nil}(R) \) be an ideal of a ring \(R \). An ideal \(\varphi \) of \(R \) is called a weak associated prime of \(R \) if there exists an \(R \)-prime ideal \(I \) such that
\[\varphi = N_R(I). \]
The set of weak associated primes of \(R \) is denoted by \(N\text{Ass}(R) \).

Example 3.3. Let \(R \) be a domain and let
\[
R_n = \begin{cases}
a & a_{12} & \cdots & a_{1n} \\
0 & a & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a \\
\end{cases} \mid a, a_{ij} \in R
\]
be the subring of \(n \times n \) upper triangular matrix ring. Then \(\text{nil}(R_n) \) is an ideal of \(R_n \) and
\[
\text{nil}(R_n) = \begin{cases}
0 & x_{12} & \cdots & x_{1n} \\
0 & 0 & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
\end{cases} \mid x_{ij} \in R
\].
Example 3.4. Let k be any field, and consider the ring $R = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ of 2×2 lower triangular matrices over k. One easily checks that $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \supseteq \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix} \supseteq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is a composition series for R_R. In particular, R_R has finite length.

Next we shall determine the set $\text{Ass}(R)$. By an easy ad hoc calculation, we can write down all of the proper nonzero ideals of R:

$$
\begin{align*}
\{m_1 = \begin{pmatrix} 0 & 0 \\ k & k \end{pmatrix}, m_2 = \begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix}, \alpha = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix}\}.
\end{align*}
$$

Now since $\alpha^2 = 0$, 0 is not a prime ideal. Moreover, since $m_1 R m_2 \subseteq \alpha$, α is not a prime ideal. So the only candidates for the associated primes of R are the maximal ideals m_1 and m_2.

We claim that $m_2 \not\subseteq \text{Ass}(R)$. Otherwise, there would exist a right ideal $I \supseteq 0$ of R with $m_2 = r_R(I)$. So $I \cdot m_2 = 0$. Now, given $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I$, we have $0 = (a k^2 c) \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, so $a = b = 0$. Also, $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ implies that $c = 0$. Thus $I = 0$, a contradiction. Hence $m_2 \not\subseteq \text{Ass}(R)$.

By virtue of R_R being Noetherian, we know that $\text{Ass}(R) \neq \emptyset$. Hence $\text{Ass}(R) = \{m_1\}$.

Finally, we should determine the set of $\text{NAss}(R)$. Clearly, $\text{nil}(R) = \alpha$. Thus $\text{nil}(R)$ is an ideal. Now we show that $m_1 = N_R(m_2)$ and m_2 is a right R-prime ideal. Clearly, $m_1 \subseteq N_R(m_2)$ since $m_2 m_1 = 0$. Given $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in N_R(m_2)$, we have $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \in N_R(0)$. Then $\alpha = 0$ and so $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in m_1$. Hence $m_1 = N_R(m_2)$. Next we see that m_2 is a right R-prime ideal. Let $n \not\subseteq \text{nil}(R)$ and $n \subseteq m_2$. Since $N_R(n) \supseteq N_R(m_2)$ is clear, we now assume that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in N_R(n)$, and find $\begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix} \in n$ with $h \neq 0$. Then we have $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \cdot \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix} \in \text{nil}(R)$. Thus $\alpha = 0$ and so $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in N_R(m_2)$. Hence we obtain $N_R(n) = N_R(m_2)$ and so m_2 is a right R-prime ideal. Thus we obtain $m_1 \in \text{NAss}(R)$. Similarly, we have $m_2 \in \text{NAss}(R)$. Therefore $\text{NAss}(R) = \{m_1, m_2\} \neq \text{Ass}(R)$.

If R is reduced, then φ is a weak associated prime of R if and only if φ is an associated prime of R. So $\text{NAss}(R) = \text{Ass}(R)$ in case R is reduced.

In the following, unless stated otherwise, we shall always assume that R is a semicommutative right Noetherian ring, and (S, \leq) a strictly totally ordered monoid.

Let $f \in [[R^S, \leq]]$. We denote by $N(f)$ the right ideal of R generated by $C_f = \{f(s) \mid s \in S\}$. Since R is a right Noetherian ring, we can find $s_i \in S$, $i = 1, 2, \ldots, n$, and $s_1 \leq s_2 \leq \cdots \leq s_n$, such that $N(f)$ is generated by $f(s_1), f(s_2), \ldots, f(s_n)$. Consider the n elements $f(s_1), f(s_2), \ldots, f(s_{k-1}), f(s_k), f(s_{k+1}), \ldots, f(s_n)$. If $f(s_k) \not\in \text{nil}(R)$, and $f(s_i) \in \text{nil}(R)$ for all $k < i \leq n$, then we say that the weak degree of f is k. To simplify notations, we write $N \deg(f)$ for the weak degree of f. If $f(s_i) \in \text{nil}(R)$ for all $1 \leq i \leq n$, then we define $N \deg(f) = -1$.
Definition 3.5. Let $f \in [[R^{S, \leq}]])$, $N(f)$ is generated by $f(s_1), f(s_2), \ldots, f(s_n)$, $s_i \leq s_j$ if $i \leq j$, and $N \deg(f) = k$. If $N_R(f(s_k)) \subseteq N_R(f(s_i))$ for all $i \leq k$, then we say that f is a weak good generalized power series.

Lemma 3.6. Let R be a semicommutative right Noetherian ring, (S, \leq) a strictly totally ordered monoid. For any $f \notin \text{nil}([[R^{S, \leq}]])$, there exists $r \in R$ such that $fr = fC^0_r$ is a weak good generalized power series.

Proof. Assume that the result is false, and let $f \notin \text{nil}([[R^{S, \leq}]])$ be a counterexample of minimal weak degree $N \deg(f) = k \geq 1$. In particular, f is not a weak good generalized power series. Suppose that $N(f)$ is generated by $f(s_1), f(s_2), \ldots, f(s_n)$, where $s_i \leq s_j$ if $i \leq j$. Hence there exists $i < k$ such that $N_R(f(s_i)) \subseteq N_R(f(s_i))$. So we can find $b \in R$ with $f(s_i)b \notin \text{nil}(R)$, and $f(s_i)b \notin \text{nil}(R)$. Consider the generalized power series $fb = fC^0_b \in [[R^{S, \leq}]])$. Clearly, $N(fb)$ is generated by $f(s_1)b, f(s_2)b, \ldots, f(s_n)b$, where $s_i \leq s_j$ if $i \leq j$, and $f(s_i)b \notin \text{nil}(R)$ implies $fb \notin \text{nil}([[R^{S, \leq}]])$. It is easy to see that fb has weak degree at most $k - 1$. By the minimality of k, we know that there exists $c \in R$ with $f \cdot b \cdot c = f \cdot (bc)$ weak good. But this contradicts the fact that f is a counterexample to the statement. □

Proposition 3.7. Let R be a semicommutative right Noetherian ring, (S, \leq) a strictly totally ordered monoid. Then $\text{NAss}([[R^{S, \leq}]]) = \{[\varphi^{S, \leq}] \mid \varphi \in \text{NAss}(R)\}.$

Proof. We first prove \supseteq. Let $\varphi \in \text{NAss}(R)$. By definition, there exists a right ideal $I \subseteq \text{nil}(R)$ with I an R-prime ideal and $\varphi = N_R(I)$. It suffices to prove

\begin{equation}
[[\varphi^{S, \leq}] = N[[R^{S, \leq}]([I^{S, \leq}]),
\end{equation}

and

\begin{equation}
[[I^{S, \leq}]] \text{ is } [[R^{S, \leq}]]-\text{prime}.
\end{equation}

For Eq.(1), let $f \in [[I^{S, \leq}]]$ and let $g \in [[\varphi^{S, \leq}]]$. Then for any $u, v \in S$, since $f(u) \in I$ and $g(v) \in \varphi$, we obtain $f(u)g(v) \in \text{nil}(R)$. Applying Corollary 2.8 yields that $fg \in \text{nil}([[R^{S, \leq}]])$. Hence $[[\varphi^{S, \leq}]] \subseteq N[[R^{S, \leq}]([I^{S, \leq}])].$

Conversely, if $g \in N[[R^{S, \leq}]([I^{S, \leq}])]$, then $fg \in \text{nil}([[R^{S, \leq}]]$ for all $f \in [[I^{S, \leq}]].$ In particular, for any $b \in I$, $C^0_b \in \text{nil}([[R^{S, \leq}])].$ Thus, by Corollary 2.8, $bg(s) \in \text{nil}(R)$ for any $s \in S$, and so $g(s) \in N_R(I) = \varphi$ for any $s \in S$. Hence $g \in [[\varphi^{S, \leq}]]$, and so $N[[R^{S, \leq}]([I^{S, \leq}])] \subseteq [[\varphi^{S, \leq}]].$ Therefore $[[\varphi^{S, \leq}]] = N[[R^{S, \leq}]([I^{S, \leq}])].$

Note that the right ideal I is an R-prime ideal. Then we have $I \not\subseteq \text{nil}(R)$. Thus

$$[[I^{S, \leq}]] \not\subseteq [[\text{nil}(R)^{S, \leq}]] = \text{nil}([[R^{S, \leq}]).$$

To see (2), we must show that if a right ideal $\mathcal{U} \not\subseteq \text{nil}([[R^{S, \leq}])$ and $\mathcal{U} \subseteq [[I^{S, \leq}]]$, then

$$N[[R^{S, \leq}]([\mathcal{U}]) = N[[R^{S, \leq}]([I^{S, \leq}])].$$
To this end, let $C_0 = \bigcup_{f \in \mathcal{U}} C_f$, where $C_f = \{ f(x) \mid x \in S \}$, and let φ_0 denote the right ideal of R generated by C_0. Since $\mathcal{U} \not\subseteq \text{nil}([R^{S, \leq}]) = \{ \text{nil}(R)^{S, \leq} \}$, $C_0 \not\subseteq \text{nil}(R)$, and hence $\varphi_0 \subseteq I$, $\varphi_0 \not\subseteq \text{nil}(R)$. So we have $N_R(\varphi_0) = N_R(I) = \varphi$ because I is R-prime. Since $N([R^{S, \leq}](I) \supseteq N([R^{S, \leq}](I^{S, \leq}))$ is clear, it suffices to show that
\[N([R^{S, \leq}](I) \supseteq N([R^{S, \leq}](I^{S, \leq}))). \]

We now assume that $g \in N([R^{S, \leq}](I))$, then $fg \in \text{nil}([R^{S, \leq}])$ for every $f \in \mathcal{U}$. By Corollary 2.8, we obtain $f(u)g(v) \in \text{nil}(R)$ for all u, $v \in S$. It follows from Lemma 2.4 that $f(u)g(v) \subseteq \text{nil}(R)$ for all u, $v \in S$. Thus $g(v) \in N_R(\varphi_0) = N_R(I) = \varphi$ for all $v \in S$, and so $g \in [\varphi^{S, \leq}] = N([R^{S, \leq}](I^{S, \leq}))$. Hence $N([R^{S, \leq}](I)) \subseteq N([R^{S, \leq}](I^{S, \leq}))$ is proved, and so is \subseteq in Proposition 3.7.

Now we turn our attention to proving \subseteq in Proposition 3.7. Let $I \in N_{\text{Ass}}([R^{S, \leq}])$. By definition, we have an $[R^{S, \leq}]$-prime ideal L with $I = N([R^{S, \leq}](L))$. Pick any $\pi \in L$, and let $N(\pi)$ be the right ideal of R generated by C_π. Since R is a right Noetherian ring, we can find
\[s_1 < s_2 < \cdots < s_n \]
such that $N(\pi)$ is generated by n elements
\[\pi(s_1), \pi(s_2), \ldots, \pi(s_n). \]
Since $N(\pi) = k$, we have $\pi(s_k) \not\in \text{nil}(R)$, and $N_R(\pi(s_k)) \subseteq N_R(\pi(s_j))$ if $i \leq k$, and $\pi(s_i) \not\in \text{nil}(R)$ if $i > k$. Considering the right ideal $\pi(s_k)R$, and assuming that $U = N_R(\pi(s_k)R)$, we wish to claim that $I = [U^{S, \leq}]$. Let $\alpha \in [U^{S, \leq}]$. Then for each $v \in S$, $\alpha(v) \in U = N_R(\pi(s_k)R)$, and so $\pi(s_k)R\alpha(v) \subseteq \text{nil}(R)$. Since π is a weak good generalized power series, and $N(\pi) = k$, we have
\[\pi(s_i)R\alpha(v) \subseteq \text{nil}(R) \quad \text{for all} \quad 1 \leq i \leq k. \]

On the other hand, for all $i > k$, $\pi(s_i) \in \text{nil}(R)$, thus we have
\[\pi(s_i)R\alpha(v) \subseteq \text{nil}(R) \quad \text{for all} \quad 1 \leq i \leq n. \]
Since $N(\pi)$ is generated by $\pi(s_i)$, $1 \leq i \leq n$, for each $u \in U$, there exist $r_i \in R$, $1 \leq i \leq n$, such that
\[\pi(u) = \pi(s_1)r_1 + \pi(s_2)r_2 + \cdots + \pi(s_n)r_n. \]
Thus we obtain
\[\pi(u)R \alpha(v) = \left(\sum_{i=1}^{n} \pi(s_i)r_i \right) R \alpha(v) \subseteq \text{nil}(R). \]

Hence for any \(h \in [[R^S]] \) and any \(u, v \in S \), we have \(\pi(u)h(w) \alpha(v) \in \text{nil}(R) \), and so by Corollary 2.8, we have \(\pi \alpha \in \text{nil}([[R^S]]) \). Thus \(\alpha \in N([[R^S]])(\pi [[R^S]]) = I \). Hence \([U^S] \subseteq I\).

Conversely, let
\[\beta \in I = N([[R^S]])(\mathcal{L}) = N([[R^S]])(\pi [[R^S]]). \]

Then for any \(\mathcal{C}^0 \subseteq [[R^S]] \), we have \(\pi \mathcal{C}^0 \beta \in \text{nil}([[R^S]]) \). Then by Corollary 2.8, we get \(\pi(s_k)r \beta(v) \in \text{nil}(R) \) for all \(r \in R \) and \(v \in S \). Hence \(\beta(v) \in N_R(\pi(s_k)R) = U \) for each \(v \in S \), and so \(\beta \in [[U^S]] \). Hence \(I \subseteq [[U^S]] \).

Therefore \(I = [[U^S]] \).

We are now to check that the principally right ideal \(\pi(s_k)R \) is \(R \)-prime. Since \(\pi(s_k) \not\in \text{nil}(R) \), \(\pi(s_k)R \not\subseteq \text{nil}(R) \). Assume that a right ideal \(Q \subseteq \pi(s_k)R \), and \(Q \not\subseteq \text{nil}(R) \). Then \(N_R(Q) \geq N_R(\pi(s_k)R) \) is clear. Now we show that
\[N_R(Q) \subseteq N_R(\pi(s_k)R). \]

Set \(W = \{ \pi r = \pi \mathcal{C}^0 \mid r \in Q \} \), and let \(W([[R^S]]) \) be the right ideal of \([R^S] \) generated by \(W \). It is obvious that \(W([[R^S]]) \subseteq \pi([[R^S]]) \). Since \(Q \not\subseteq \text{nil}(R) \), there exists \(a \in R \) such that \(\pi(s_k)a \in Q \) and \(\pi(s_k)a \not\in \text{nil}(R) \). If
\[(\pi \cdot \pi(s_k)a)(s_k) = (\pi \mathcal{C}^0_{\pi(s_k)a})(s_k) = \pi(s_k)\pi(s_k)a \in \text{nil}(R), \]
then we have
\[\pi(s_k)\pi(s_k)a \in \text{nil}(R) \Rightarrow \pi(s_k)a\pi(s_k) \in \text{nil}(R) \Rightarrow \pi(s_k)a \in \text{nil}(R). \]
This contradicts to the fact that \(\pi(s_k)a \not\in \text{nil}(R) \). Thus \(\pi \cdot \pi(s_k)a(s_k) \not\in \text{nil}(R) \), and so by Corollary 2.6,
\[\pi \cdot \pi(s_k)a \not\in \text{nil}([[R^S]]) \]
This implies that \(W([[R^S]]) \not\subseteq \text{nil}([[R^S]]) \). Since \(\mathcal{L} \) is \([[R^S]]\)-prime, we obtain
\[N([[R^S]])(W([[R^S]])) = N([[R^S]])(\pi([[R^S]])) = I = [[U^S]]. \]

Suppose \(q \in N_R(Q) \). Then \(rq \in \text{nil}(R) \) for each \(r \in Q \). Then for any \(r \in Q \), and any \(\pi r \alpha = \pi \mathcal{C}^0 \alpha \in W([[R^S]]) \) and any \(s \in S \),
\[(\pi \mathcal{C}^0 \alpha \mathcal{C}^0_q)(s) = \sum_{(u,v) \in S} \pi(u) \alpha(v) q. \]
From \(rq \in \text{nil}(R) \) and Lemma 2.4, we obtain \(\pi(u) \alpha(v) q \in \text{nil}(R) \) for any \(u, v \in S \), and so \(\pi \mathcal{C}^0 \alpha \mathcal{C}^0_q \subseteq \text{nil}(R) \). Thus by Corollary 2.6, \(\mathcal{C}^0 \alpha \mathcal{C}^0_q \subseteq \text{nil}([[R^S]]) \). Hence
\[\mathcal{C}^0_q \subseteq N([[R^S]])(W([[R^S]])) = I = [[U^S]]. \]
and so \(q \in U = N_R(\pi(s_k)R) \). Hence \(N_R(Q) \subseteq N_R(\pi(s_k)R) \), and this implies that \(N_R(Q) = N_R(\pi(s_k)R) \). Thus we obtain \(\pi(s_k)R \) is \(R \)-prime.

Assembling the above results, we finish the proof of Proposition 3.7. \(\square \)

Corollary 3.8. Let \(R \) be a semicommutative Noetherian ring. Then

\[
N_{\text{Ass}}(R[[x]]) = \{ \varphi[[x]] \mid \varphi \in N_{\text{Ass}}(R) \}.
\]

Acknowledgements. The authors are deeply indebted to the referee for many helpful comments and suggestions for the improvement of this paper.

References

Department of Mathematics
Hunan University of Science and Technology
Xiangtan, Hunan 411201, P. R. China
E-mail address: Ouyanglqtxy@163.com