DOI QR코드

DOI QR Code

SOLUTION OF SEMICOERCIVE SIGNORINI PROBLEM BASED ON A DUALITY SCHEME WITH MODIFIED LAGRANGIAN FUNCTIONAL

  • Namm, Robert V. (Pacific National University) ;
  • Woo, Gyung-Soo (Department of Mathematics Changwon National University) ;
  • Xie, Shu-Sen (School of Mathematical Sciences Ocean University of China) ;
  • Yi, Su-Cheol (Department of Mathematics Changwon National University)
  • Received : 2011.06.02
  • Published : 2012.07.01

Abstract

In this paper, the iterative Uzawa method with a modified Lagrangian functional is investigated to seek a saddle point for the semicoercive variational Signorini inequality.

References

  1. G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
  2. G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Nauka, Moscow, 1980.
  3. G. Fikera, Existence Theorems in Elasticity, Springer-Verlag, Berlin, 1976.
  4. G. Fikera, Existence Theorems in Elasticity, Nauka, Moskow, 1980.
  5. I. Glavacek, J. Haslinger, I. Necas, and J. Lovisek, Numerical Solution of Variational Inequalities, Springer-Verlag, Berlin, 1988.
  6. I. Glavacek, J. Haslinger, I. Necas, and J. Lovisek, Numerical Solution of Variational Inequalities, Mir, Moscow, 1986.
  7. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.
  8. R. Glowinski, J. L. Lions, and R. Tremolieres, Numerical Analysis of Variational In- equalities, North-Holland, Amsterdam, 1981.
  9. N. Kikuchi and T. Oden, Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
  10. R. V. Namm and S. A. Sachkov, Solution of the quasi-variational Signorini inequality by the method of successive approximations, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009), no. 5, 805-814; translation in Comput. Math. Math. Phys. 49 (2009), no. 5, 776-785.
  11. G. Vu, S. Kim, R. V. Namm, and S. A. Sachkov, The method of iterative proximal regularization for finding a saddle point in the semi-coercive Signorini problem, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 11, 2024-2031; translation in Comput. Math. Math. Phys. 46 (2006), no. 11, 1932-1939.
  12. G. Woo, R. V. Namm, and S. A. Sachkoff, An iterative method, based on a modified Lagrange functional, for finding a saddle point for the semi-coercive Signorini problem, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 26-36; translation in Comput. Math. Math. Phys. 46 (2006), no. 1, 23-33.

Cited by

  1. LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS vol.52, pp.6, 2015, https://doi.org/10.4134/JKMS.2015.52.6.1195
  2. Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems vol.171, pp.2, 2016, https://doi.org/10.1007/s10957-016-0969-z