DOI QR코드

DOI QR Code

Thermal Aging Behaviors of Weather Resistant Rubber Composites of EPDM, IIR, and BIIR

EPDM, IIR, 그리고 BIIR 내후성 고무 복합체의 열노화 거동

  • Received : 2012.03.21
  • Accepted : 2012.05.31
  • Published : 2012.06.30

Abstract

EPDM, IIR, and BIIR composites were thermally aged and the crosslink density changes were investigated. Crosslink densities of the EPDM composite increased with increasing the aging time and temperature, whereas those of IIR and BIIR composites for long-term aging at high temperatures tended to decrease. Activation energies for the crosslink density changes of the EPDM composite were higher than those of the BIIR one. The experimental results were explained with the number of allylic hydrogens, activation of the zinc complex, the steric hindrance effect, and oxidation of rubber chain.

EPDM, IIR, 그리고 BIIR 복합체를 열노화시켜 가교밀도 변화를 조사하였다. 노화 시간이 증가하거나 노화온도가 올라갈수록 EPDM 복합체의 가교밀도는 증가하였으나, 고온에서 장기간 노화된 IIR과 BIIR 복합체의 가교밀도는 감소하는 경향을 보였다. EPDM 복합체의 가교밀도 변화에 대한 활성화 에너지는 BIIR 복합체보다 높았다. 실험결과는 알릴 수소의 수, 아연 복합체의 활성화, 입체 가리움 효과, 그리고 고무 사슬의 산화로 설명하였다.

Keywords

References

  1. S.-S. Choi and J.-C. Kim, "Chlorine effect on thermal aging behaviors of BR and CR composites", Bull. Kor. Chem. Soc., 31, 2613 (2010). https://doi.org/10.5012/bkcs.2010.31.9.2613
  2. S.-S. Choi, "Influence of thermal aging on change of crosslink density and deformation of natural rubber vulcanizates", Bull. Kor. Chem. Soc., 21, 628 (2000).
  3. C.-S. Woo and S.-S. Choi, "Effects of thermal aging on properties and life-time prediction of NBR and EPDM vulcanizates", Elastomer, 40, 119 (2005).
  4. S.-S. Choi, S.-H. Ha, and C.-S. Woo, "Thermal aging behaviors of rubber vulcanizates cured with single and binary cure systems", Bull. Kor. Chem. Soc., 27, 429 (2006). https://doi.org/10.5012/bkcs.2006.27.3.429
  5. S.-S. Choi, J.-C. Kim, and C.-S. Woo, "Accelerated thermal aging behaviors of EPDM and NBR vulcanizates", Bull. Kor. Chem. Soc., 27, 936 (2006). https://doi.org/10.5012/bkcs.2006.27.6.936
  6. S.-S. Choi and J.-C. Kim, "Influence of the 1,2-unit content of SBR and filler systems on thermal aging behaviors of SBR composites", J. Ind. Eng. Chem., 13, 950 (2007).
  7. S.-S. Choi, J.-C. Kim, S. G. Lee, and Y. L. Joo, "Influence of the cure systems on long time thermal aging behaviors of NR composites", Macromol. Res., 16, 561 (2008). https://doi.org/10.1007/BF03218560
  8. S.-S. Choi, J. Jose, M.-Y. Lyu, Y.-I. Huh, B. H. Cho, and C. Nah, "Influence of filler and cure systems on thermal aging resistance of natural rubber vulcanizates under strained condition", J. Appl. Polym. Sci., 118, 3074 (2010). https://doi.org/10.1002/app.32738
  9. S.-S. Choi and J.-C. Kim, "Influence of reinforcing systems on thermal aging behaviors of NR composites", Elast. Comps., 46, 237 (2011).
  10. S.-S. Choi and J.-C. Kim, "Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes", J. Ind. Eng. Chem., 18, 1166 (2012). https://doi.org/10.1016/j.jiec.2012.01.011
  11. S.-S. Choi, "Influence of thermally aged resoles on properties of resole-cured butyl rubber vulcanizates", Kor. Polym. J., 7, 30 (1999).
  12. S.-S. Choi, K.-C. Nam, S. W. Ko, and J. M. Kim, "Properties of butyl rubber vulcanizates cured by different type resoles", Kor. Polym. J., 7, 172 (1999).
  13. N. J. Morrison and M. Porter, "Temperature effects on the stability of intermediates and crosslinking in sulfur vulcanization", Rubber Chem. Technol., 57, 63 (1984). https://doi.org/10.5254/1.3536002
  14. C. H. Chen, J. L. Koenig, J. R. Shelton, and E. A. Collins, "Characterization of the reversion process in accelerated sulfur curing of natural rubber", Rubber Chem. Technol., 54, 734 (1981). https://doi.org/10.5254/1.3535831
  15. S.-S. Choi, "Bond dissociation of sulfur crosslinks in IR and BR vulcanizates using semi-empirical calculations", Kor. Polym. J., 5, 39 (1997).
  16. R. W. Layer, "Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization", Rubber Chem. Technol., 65, 211 (1992). https://doi.org/10.5254/1.3538601
  17. S.-S. Choi, "Change of crosslink density of sulfur-cured NR vulcanizates by thermal aging", Kor. Polym. J., 7, 108 (1999).
  18. S.-S. Choi, "Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging", J. Appl. Polym. Sci., 75, 1378 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1378::AID-APP9>3.0.CO;2-I
  19. S.-S. Choi, "Influence of internal strain on change of crosslink density in rubber vulcanizates", Polym. Int., 50, 107 (2001). https://doi.org/10.1002/1097-0126(200101)50:1<107::AID-PI593>3.0.CO;2-Z
  20. S.-S. Choi, D.-H. Han, S.-W. Ko, and H. S. Lee, "Thermal aging behaviors of elemental sulfur-free polyisoprene vulcanizates", Bull. Kor. Chem. Soc., 26, 1853 (2005). https://doi.org/10.5012/bkcs.2005.26.11.1853
  21. S.-S. Choi and D.-H. Han, "Recovery prediction of thermally aged chloroprene rubber composite using deformation test", J. Appl. Polym. Sci., 110, 3560 (2008). https://doi.org/10.1002/app.28866
  22. S.-S. Choi and D.-H. Han, "Comparison of recovery behaviors of thermally aged SBR composite from compressed and circular deformations", Thermochim. Acta, 490, 8 (2009). https://doi.org/10.1016/j.tca.2009.01.030
  23. S.-S. Choi and D.-H. Han, "Strain effect on recovery behaviors from circular deformation of natural rubber vulcanizate", J. Appl. Polym. Sci., 114, 935 (2009). https://doi.org/10.1002/app.30699
  24. R. P. Brown and T. Butler, Natural ageing of rubber. Changes in physical properties over 40 years, RAPRA Technology Ltd. (2000).
  25. R. P. Brown, T. Butler, and S. W. Hawley, Ageing of rubber. Accelerated heat ageing test results, RAPRA Technology Ltd. (2001).
  26. S.-S. Choi, K.-C. Nam, S. W. Ko, and J. M. Kim, "Properties of butyl rubber vulcanizates cured by different type resoles", Kor. Polym. J., 7, 172 (1999).
  27. M. H. S. Gradwell and W. J. McGill, "Sulfur vulcanization of polyisoprene accelerated by benzothiazole derivatives. III. The reaction of 2-bisbenzothiazole-2,2-disulfide with sulfur and ZnO in polyisoprene", J. Appl. Polym. Sci., 61, 1131 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1131::AID-APP9>3.0.CO;2-N
  28. M. H. S. Gradwell and W. J. McGill, "Sulfur vulcanization of polyisoprene accelerated by benzothiazole derivatives. IV. The reaction of polyisoprene with N-cyclohexylbenzothiazole sulfenamide, sulfur, and zinc oxide", J. Appl. Polym. Sci., 61, 1515 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960829)61:9<1515::AID-APP11>3.0.CO;2-P
  29. B. Stenberg, L.-O. Peterson, F. Bjork, and P. Flink, "Effect of butyl rubber coating on accelerated aging of natural rubber", Rubber Chem. Technol., 59, 70 (1986). https://doi.org/10.5254/1.3538189
  30. T. Zaharescu, S. Jipa, M. Giurginca, and C. Podina, "Evaluation of compatibility of EPDM and butyl rubber-II. Thermal and radiation stability", Polym. Deg. Stab., 62, 569 (1998).

Cited by

  1. Effects of thermal aging on degradation mechanism of flame retardant-filled ethylene-propylene-diene termonomer compounds vol.132, pp.4, 2014, https://doi.org/10.1002/app.41324
  2. Organo-modified layered silicate nanocomposites of EPDM–chlorobutyl rubber blends for enhanced performance in γ radiation and hydrocarbon environment vol.52, pp.23, 2018, https://doi.org/10.1177/0021998318763504
  3. Hybrid factors influencing wet grip and rolling resistance properties of solution styrene-butadiene rubber composites vol.67, pp.3, 2018, https://doi.org/10.1002/pi.5515