DOI QR코드

DOI QR Code

Direct Measurement of Distortion of Optical System of Lithography

노광 광학계의 왜곡수차 측정에 관한 연구

  • Joo, WonDon (Samsung Electronics) ;
  • Lee, JiHoon (Department of Nano-Optical Engineering, Korea Polytechnic University) ;
  • Chae, SungMin (Department of Nano-Optical Engineering, Korea Polytechnic University) ;
  • Kim, HyeJung (Department of Nano-Optical Engineering, Korea Polytechnic University) ;
  • Jung, Mee Suk (Department of Nano-Optical Engineering, Korea Polytechnic University)
  • 주원돈 (삼성전자(주)) ;
  • 이지훈 (한국산업기술대학교 나노-광공학과) ;
  • 채성민 (한국산업기술대학교 나노-광공학과) ;
  • 김혜정 (한국산업기술대학교 나노-광공학과) ;
  • 정미숙 (한국산업기술대학교 나노-광공학과)
  • Received : 2012.05.02
  • Accepted : 2012.06.08
  • Published : 2012.06.25

Abstract

In general, one of the methods used to measure distortion is to use the full image of the regular pattern. However, because of low accuracy, this method is mainly used for an optical system such as a camera.. In order to measure distortion with high accuracy less than 1um, one can use the method of measuring the exact position of a mask image. In this case, a high accuracy stage with a laser encoder is required. In this paper, we investigate measurement of the distortion of high accuracy with a simple manual stage. The main idea is that we split and measure the mask image with the overlapping area by using CCD or CMOS, and then we get an exact position of the mask image by integrating the adjacent split images. We use the Canny Edge Detection method to get the position information of the mask image and we researched the process to exactly calculate distortion by using coordinate transformations and a least square method.

일반적으로 왜곡을 측정하는 방법으로 패턴의 전체 이미지를 분석하여 왜곡을 평가하는 방법을 이용하고 있으나 정확도가 높지 않아 카메라 등의 광학계에 많이 적용되고 있다. 1um이하의 정확도를 요구하는 왜곡수차를 측정하는 방법으로는 고가의 정밀 스테이지를 이용하여 마스크의 이미지 위치를 정확히 측정하는 방법이 주로 이용된다. 본 논문에서는 정확도가 요구되지 않는 매뉴얼 스테이지를 이용하여 왜곡을 정확히 측정하는 방법을 연구 하였다. 주요 아이디어로는 CCD나 CMOS를 이용하여 마스크 이미지를 일부 중첩되도록 분할측정하고 인접중첩영역의 이미지를 통합하여 마스크 이미지 위치를 정확히 계산하는 것이다. 마스크 이미지의 정확한 위치정보를 얻기 위해 Canny Edge Detection 기법을 사용하였으며 이렇게 확보된 위치정보로부터 좌표변환과 최소자승법을 사용하여 정확한 왜곡수차를 계산하는 과정을 연구하였다.

Keywords

References

  1. F. Hong, X. Mujun, and W. Zhiqian, "The research on distortion measurement and compensation technology in photoelectricity measurement system," in Proc. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE) (Changchun, China, Aug. 2010), vol. 4, pp. 383-388.
  2. D. W. Park and S. G. Woo, "Method for measuring distortion of exposure equipment," Patent No. 100604944, 19 July 2006.
  3. J. Lin, M. Xing, D. Sha, D. Su, and T. Shen, "Distortion measurement of CCD imaging system with short focal length and large-field objective," Optics and Lasers in Engineering 43, 1137-1144 (2005). https://doi.org/10.1016/j.optlaseng.2004.07.006
  4. J. Hou, H. Li, Z. Zheng, and X. Liu, "Distortion correction for imaging on non-planar surface using freeform lens," Opt. Comm. 285, 986-991 (2012). https://doi.org/10.1016/j.optcom.2011.12.014
  5. K. H. Hong, "Astigmatism, field curvature, and distortion," Geometrical Optics Rev. 1, 140-141 (2011).
  6. J. Greivenkamp, "Distortion," Field Guide to Geometrical Optics, 80 (2004).
  7. P. L. Reu, R. L. Engelstad, and E. G. Lovell, "Mask distortion issues for next-generation lithography," Microelectronic Engineering 69, 420-428 (2003). https://doi.org/10.1016/S0167-9317(03)00330-7
  8. J. Canny, "A computational approach to edge detection," IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679-698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851