DOI QR코드

DOI QR Code

Comparative Tissue Ablation Study between 532 and 980 nm

가시광선과 근적외선 파장을 이용한 조직 제거 연구

  • Kang, Hyun Wook (Department of Biomedical Engineering, Pukyong National University) ;
  • Oh, Junghwan (Department of Biomedical Engineering, Pukyong National University)
  • Received : 2012.05.22
  • Accepted : 2012.06.13
  • Published : 2012.06.25

Abstract

In this paper, two wavelengths mainly used for laser prostatectomy have been quantitatively compared: 532 and 980 nm. Two lasers at 40 W were employed to ablate bovine liver in vitro. Ablation performance was evaluated in light of number of sweeps, ablation volume, and coagulative necrosis. 532 nm yielded up to four times higher ablation efficiency than 980 nm. Regardless of wavelength, ablation rate per sweep decreased with the number of sweeps. 532 nm generated relatively deeper ablation craters along with thinner coagulation whereas 980 nm created superficial tissue ablation with up to 2 mm thick coagulative necrosis. Due to higher light absorption and effective thermal confinement, 532 nm induced more efficient tissue ablation with a smaller coagulative necrotic zone. The current study demonstrated that 532 nm could be a more ideal wavelength for laser prostatectomy, and the future in vivo investigations will confirm these findings.

본 논문에서는 전립선 비대증 환자 치료 시 조직 제거에 사용되는 두 파장들을 비교 연구하였다. 가시광선 영역인 532 nm는 혈액 속의 헤모글로빈에 의한 흡수율이 높은 반면, 근적외선 영역인 980 nm는 물에 의한 빛의 흡수율이 높다. 동물의 간 조직을 각각의 레이저를 이용하여 40 W 출력에서 제거하였으며, 조직 제거율을 제거 횟수, 제거 부피, 열손상 정도를 통해 검사하였다. 532 nm의 경우 높은 레이저 흡수율로 인해 조직 제거율이 980 nm 보다 4배까지 증가하였으며, 열손상은 상대적으로 약 30%까지 낮게 나타났다. 파장에 관계없이 제거 횟수가 높을수록 단위 횟수당 제거율이 낮아졌으며, 이는 레이저 빛이 거리에 따라 발산함과 동시에 제거된 조직의 입자들이 먼지 방해 현상을 일으킴으로써 효율의 저하를 일으켰음을 짐작할 수 있었다. 보다 효율적인 열적 제한 상태와 높은 흡수율로 인해 가시광선 영역의 532 nm가 근적외선 980 nm 보다 전립선 치료에 있어서 더욱 효율적인 파장임을 알 수 있었으며, 이러한 발견을 전임상 및 임상을 통해 확인할 계획이다.

Keywords

References

  1. P. C. Walsh, A. B. Retik, T. A. Stamey, and E. D. Vaughan, Campbell's Urology (W. B. Saunders Company, Philadelphia, PA, USA, 1992).
  2. L. C. Junqueira and J. Carneiro, Basic Histology (McGrawHill, New York, NY, USA, 2003).
  3. S. J. Berry, D. S. Coffey, P. C. Walsh, and L. L. Ewing, "The development of benign prostatic hyperplasia with age," Journal of Urology 132, 474-479 (1984). https://doi.org/10.1016/S0022-5347(17)49698-4
  4. E. A. Tanagho and J. W. McAninch, Smith's General Urology (McGrawHill, New York, NY, USA, 2008).
  5. J. Rassweiler, D. Teber, R. Kuntz, and R. Hofmann, "Complications of transurethral resection of the prostate (TURP)-incidence, management, and prevention," European Urology 50, 969-980 (2006). https://doi.org/10.1016/j.eururo.2005.12.042
  6. J. Edwards, "Diagnosis and management of benign prostatic hyperplasia," American Family Physician 77, 1403-1410 (2008).
  7. R. S. Malek and K. Nahen, "Photoselective vaporization of the prostate: KTP laser therapy of obstructive benign prostatic hyperplasia," AUA Update Series 23, 153-159 (2004).
  8. A. Bachman, L. Schurch, R. Ruszat, S. F. Wyler, H. H. Seifert, A. Muller, K. Lehmann, and T. Sulser, "Photo-selective vaporization (PVP) versus transurethral resection of the prostate (TURP): a prospective bi-centre study of perioperative morbidity and early functional outcome," European Urology 48, 965-971 (2005). https://doi.org/10.1016/j.eururo.2005.07.001
  9. S. L. Jacques, "Laser-tissue interactions: photochemical, photothermal, and photomechanical," Surgical Clinics of North America 72, 531-558 (1992). https://doi.org/10.1016/S0039-6109(16)45731-2
  10. H. W. Kang, J. Kim, and Y. S. Peng, "In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 micrometer," Lasers in Surgery and Medicine 42, 237-244 (2010). https://doi.org/10.1002/lsm.20895
  11. A. J. Welch and J. C. van Gemert Martin, Optical-thermal Response of Laser-irradiated Tissue (Plenum Press, New York, NY, USA, 1995).
  12. M. H. Niemz, Laser-tissue Interactions (Springer-Verlag, Berlin, Germany, 1996).
  13. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chemical Review 103, 577-644 (2003). https://doi.org/10.1021/cr010379n
  14. N. Honda, K. Ishii, and K Awazu, "Optical properties measurement of the laser-ablated tissues for the combined laser ablation with photodynamic therapy," SPIE Proceedings 8221, 82210F (2012).