DOI QR코드

DOI QR Code

Finite Element Simulation of Fatigue Crack Growth: Determination of Exponent m in Paris Law

피로균열성장의 유한요소 시뮬레이션: Paris 법칙의 지수 m의 결정

  • Chu, Seok-Jae (Dept. of Mechanical Engineering, Univ. of Ulsan) ;
  • Liu, Cong-Hao (Dept. of Mechanical Engineering, Univ. of Ulsan)
  • 주석재 (울산대학교 기계공학부) ;
  • 유총호 (울산대학교 기계공학부)
  • Received : 2011.09.01
  • Accepted : 2012.05.08
  • Published : 2012.07.01

Abstract

The finite element simulations of fatigue crack growth are carried out. Using only the mechanical properties usually obtained from the tensile test as input data, we attempted to predict the fatigue crack growth behavior. The critical crack opening displacement is determined by monitoring the change in displacements at the node close to the crack tip. Crack growth is simulated by debonding the crack tip node. The exponent in the Paris law was determined and compared to the published exponent. Plotting with respect to the effective stress intensity factor range yielded more consistent results.

피로균열성장을 유한요소 시뮬레이션하였다. 인장시험으로 얻는 기계적 성질만을 사용하여 피로균열성장거동을 예측하려고 하였다. 유한요소해석 결과 균열선단 부근 절점의 변위의 변화를 살펴 임계균열개구변위를 결정하였다. 균열선단 절점을 분리하여 균열성장을 시뮬레이션하였다. Paris 법칙의 지수를 결정하여 이미 발표된 값과 비교하였다. 균열닫힘을 고려한 유효 응력확대계수에 관하여 그렸을 때 더 일관성이 있는 결과를 얻었다.

Keywords

References

  1. Nicholls, D. J., 1994, "The Relation Between Crack Blunting and Fatigue Crack Growth Rates," Fatigue Fracture of Engineering Materials and Structures, Vol. 17, No. 4, pp. 459-467. https://doi.org/10.1111/j.1460-2695.1994.tb00245.x
  2. Berger, F. and Zouhar, G., 2000, "A New Approach to the Correlation Between the Coefficient and the Exponent in the Power Law Equation of Fatigue Crack Growth," International Journal of Fatigue, Vol. 22, pp. 229-230. https://doi.org/10.1016/S0142-1123(99)00123-1
  3. Carpinteri, A. and Paggi, M., 2007, "Are the Paris' Law Parameters Dependent on Each Other," Atti del Congresso IGF19, pp. 217-224.
  4. Nguyen, O., Repetto, E. A., Ortiz, M. and Radovitzky, R. A., 2001, "A Cohesive Model of Fatigue Crack Growth," International Journal of Fracture, Vol. 110, pp. 351-369. https://doi.org/10.1023/A:1010839522926
  5. Fan. F., Kalnaus, S. and Jiang, Y., 2008, "Modeling of Fatigue Crack Growth of Stainless Steel 304L," Mechanics of Materials, Vol. 40, pp. 961-973. https://doi.org/10.1016/j.mechmat.2008.06.001
  6. Seifi, R. and Bahrami, R., 2010, "Numerical Modeling the Effects of Overloading and Underloading in Fatigue Crack Growth," Engineering Failure Analysis, Vol. 17, pp. 1475-1482. https://doi.org/10.1016/j.engfailanal.2010.05.009
  7. ABAQUS 6.10 keywords Reference Manual.
  8. Sander, M. and Richard, H. A., 2005, "Finite Element Analysis of Fatigue Crack Growth with Interspersed Mode I and Mixed Mode Overloads," International Journal of Fatigue, Vol. 27, pp. 905-913. https://doi.org/10.1016/j.ijfatigue.2004.10.008
  9. Chu, S. J., 2011, "True Stress-True Strain Curves Obtained by Simulating Tensile Tests Using the Finite Element Program," Trans. of the KSME(A), Vol. 35, pp. 25-31.
  10. Kim, J. R. Rasmussen, 2001, "Full-Range Stress-Strain Curves for Stainless Steel Alloys," The University of Sydney, Research Report No. R811.
  11. Jono, M. and Song, J. H., 2006, Fatigue Cracks, Intervision, pp. 78-79.
  12. Davis, J. R., 1996, Stainless Steels, ASM Speciality Handbook, p. 52.

Cited by

  1. 3D Analysis of Crack Growth in Metal Using Tension Tests and XFEM vol.38, pp.4, 2014, https://doi.org/10.3795/KSME-A.2014.38.4.409
  2. 3D Analysis of Crack Behavior Using XFEM vol.789-790, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.789-790.278