DOI QR코드

DOI QR Code

Method to Determine Elastic Follow-Up Factors to Predict C(t) for Elevated Temperature Structures

이차하중을 받는 고온 구조물의 C(t) 예측을 위한 탄성추종 계수 결정법

  • Received : 2012.01.06
  • Accepted : 2012.04.13
  • Published : 2012.07.01

Abstract

This paper proposes a method to determine the elastic follow-up factors for the $C(t)$-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with the $C(t)$-integral. Elastic follow-up behavior, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the values of $C(t)$ and creep crack growth increase as increasing elastic follow-up. An estimation solution for $C(t)$ was proposed by Ainsworth and Dean based on the reference stress method. To predict the value of $C(t)$ using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is needed. This paper proposed that the elastic follow-up factors for $C(t)$ can be determined by elastic-plastic analyses using the plastic-creep analogy. Finite element analyses were performed to verify this method.

본 논문은 이차하중을 받는 고온 구조물의 $C(t)$-적분 예측을 위한 탄성추종 계수를 결정하는 기법을 제시한다. 이차하중을 받는 구조물의 과도 크리프 상태의 크리프 균열 진전률은 $C(t)$를 이용하여 정량화할 수 있다. 이차하중을 받는 구조물에서 발생할 수 있는 탄성추종 현상은 응력 완화를 방해하므로, 탄성추종 현상이 증가하면 $C(t)$와 크리프 균열 진전률이 증가한다. Ainsworth 와 Dean 은 참조응력법에 기반하여 $C(t)$ 예측식을 제시하였는데, 이 식을 계산하기 위해서는 탄성추종 계수가 필요하다. 본 연구에서 고온 균열 구조물의 크리프에 의한 탄성추종 계수를 결정하는 방법을 제시하였다. 소성-크리프 유사성을 이용하여 탄소성 유한요소해석으로 크리프 탄성추종 계수를 결정할 수 있다. 유한요소해석을 이용하여 이 탄성추종 계수 결정법을 검증하였다.

Keywords

References

  1. Abram, T and Ion, S., 2008, "Generation-IV Nuclear Power: A Review of the State of the Science," Energy Policy, Vol. 36, pp. 4323-4330. https://doi.org/10.1016/j.enpol.2008.09.059
  2. The Generation IV International Forum (2010 Sep 3). Retrieved Sep 10, 2011 from http://www.gen-4.org/.
  3. Hahn, D. et al., 2007, "Conceptual Design of the Sodium-Cooled Fast Reactor KALIMER-600," Nuclear Engineering and Technology, Vol. 39, pp. 193-206. https://doi.org/10.5516/NET.2007.39.3.193
  4. Noh, J. M., Kim, K. S., Kim, Y. and Lee, H. C., 2008, "Development of a Computer Code System for the Analysis of Prism and Pebble Type VHTR Cores," Annals of Nuclear Energy, Vol. 35, pp. 1919-1928. https://doi.org/10.1016/j.anucene.2008.03.011
  5. Kasahara, N., Nakamura, K., Morishita, M., Shibamoto, H. and Inoue, K., 2008, "Main R&D Issues for Fast Reactor Structural Design Standard," Nuclear Engineering and Design, Vol. 238, pp. 287-298. https://doi.org/10.1016/j.nucengdes.2006.09.018
  6. ASME Boiler and Pressure Vessel Code, Section III, ASME, 2007, New York, USA.
  7. RCC-MR: Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, AFCEN, 2002, France.
  8. R5: An Assessment Procedure for the High Temperature Response of Structures, Revision 3, British Energy Generation Limited, 2003, Gloucester, UK.
  9. Robinson, E. L., 1955, "Strain Piping Design to Minimize Creep Concentration," Transactions of ASME, Vol. 77, pp. 1147-1162.
  10. Boyle, J. T. and Nakamura, K., 1987, "The Assessment of Elastic follow-up in High Temperature Piping Systems - Overall Survey and Theoretical Aspects," International Journal of Pressure Vessels and Piping, Vol. 29, pp. 167-194. https://doi.org/10.1016/0308-0161(87)90049-4
  11. Kasahara, N., Nagata, T., Iwata, K. and Negishi, H., 1995, "Advanced Creep-Fatigue Evaluation Rule for Fast Breeder Reactor Components: Generalization of Elastic Follow-up Model," Nuclear Engineering and Design, Vol. 155, pp. 499-518. https://doi.org/10.1016/0029-5493(94)00930-W
  12. Lei, Y. 2005, A Validation of the Newly Extended Method for the Estimation of the Creep Crack Tip Characterising Parameters Using Existing Finite Element Results, British energy Report, E/REP/BDBB/0083/GEN/ 05, British Energy, UK.
  13. Lei, Y. 2008, Finite Element RCC-MR Creep Analysis of Circumferentially Cracked Cylinders Under Combined Residual Stress and Mechanical Load, British Energy Report, E/REP/BBGB/0027/GEN/07, British Energy, UK.
  14. Ainsworth, R. A., Dean, D. W. and Budden, P. J., 2010, Creep and Creep-Fatigue Crack Growth for Combined Loading: Extension of the Advice in R5 Volume 4/5 Appendix A3, British Energy Report, E/REP/ BDBB/0059/GEN/04, British Energy, UK.
  15. Webster, G. A. and Ainsworth, R. A., 1994, High Temperature Component Life Assessment, Chapman & Hall, London, UK.
  16. Hoff, N. J., 1954, "Approximate Analysis of Structures in the Presence of Moderately Large Creep Deformations," Quarterly of Applied Mathematics, Vol. 12, pp. 49-55. https://doi.org/10.1090/qam/61004
  17. Roche, R. L., 1988, "Modes of Failure - Primary and Secondary Stresses," ASME Journal of Pressure Vessel Technology, Vol. 110, pp. 234-239. https://doi.org/10.1115/1.3265594
  18. ABAQUS Version 6.9. User's Manual, 2009, Dassault Systems Simulia Corporation, USA.
  19. Song, T. K., Kim, Y. J., Nikbin, K. and Ainsworth, R. A., 2010, "Estimation of the Transient Creep Parameter C(t) Under Combined Mechanical and Thermal Stresses," Engineering Fracture Mechanics, Vol. 77, pp. 685-704. https://doi.org/10.1016/j.engfracmech.2009.12.004