차분 선부호화 구조를 적용한 LTE-A 상향링크 시스템의 성능분석

Preformance Analysis of LTE-A System Uplink with Differential Precoding Scheme

  • 이신 (충북대학교 정보통신공학과) ;
  • 박노윤 (충북대학교 정보통신공학과) ;
  • 김영주 (충북대학교 정보통신공학과)
  • Li, Xun (School of Information and Communication Engineering, Chungbuk National University) ;
  • Park, Noe-Yoon (School of Information and Communication Engineering, Chungbuk National University) ;
  • Kim, Young-Ju (School of Information and Communication Engineering, Chungbuk National University)
  • 투고 : 2012.03.22
  • 심사 : 2012.05.12
  • 발행 : 2012.05.25

초록

LTE 시스템에서는 폐회로 기반의 다중 안테나 기술이 적용되었으며, 차분 코드북을 비롯한 다양한 다중 안테나 기반의 선부호화 기술들이 향상된 LTE (LTE-Advanced) 시스템의 요구조건을 만족시키기 위해 제안되었다. 차분 코드북 설계와 관련하여 이전에 연구된 내용은 준 대각(quasi-diagonal) 단위 행렬 및 구면 캡(spherical cap)에 중점을 두었지만, 이는 동 이득 성질을 만족하지 못한다. 동 이득 성질은 특히 상향 링크에서 첨두 전력 대 평균 전력비 (PAPR)에 상당한 영향을 미치므로 매우 중요하다. 본 논문에서는 각 송신 안테나에 동 이득을 유지하는 성질을 이용한 새로운 차분 코드북을 상향 링크 기반 차분 선부호화 시스템에 적용하고, 이를 통해 비트 오류율(BER)과 첨두 전력 대 평균 전력비를 분석하였다. 특히, 송신기의 비선형 증폭기를 고려하여 다양한 차분 선부호화 기법들의 성능을 분석하였다. 모의 실험을 통해 선형 증폭기를 고려할 경우 기존에 제안된 차분 코드북이 우수한 성능을 보이지만, 비선형 증폭기를 고려할 경우에는 제안하는 차분 코드북의 우수함을 증명하였다.

The closed-loop multiple-input multiple-output (MIMO) system has been adopted by long term evolution (LTE) system. Many techniques are proposed to enhance the transmission of LTE's advanced version to meet the increasing requirement, in which differential codebook gains a lot of interest. Previous researches on designing differential codebooks focused on quasi-diagonal unitary matrix which cannot guarantee the equal gain property. The equal gain property is very important to uplink because the performance of uplink is very sensitive to the peak-to-average power ratio (PAPR). In this paper, we derive the analytical expression of average bit error rate and PAPR for differential precoding MIMO system. Using the analytical results, we investigate the performances of several differential precoding schemes considering non-linear amplifier at the transmitter. Some selected simulation results indicate that the conventional differential precoding schemes have good performances without the consideration of non-linear amplifier. While considering non-linear amplifier, the proposed differential codebook outperforms other differential precoding schemes because it maintains the equal gain per transmit antenna.

키워드

참고문헌

  1. 3rd Generation Partnership Project, 3GPP TR 36.913 - Requirements for further advancedments for E-UTRA (LTE-Advanced), Mar. 2011.
  2. I. E. Telatar, "Capacity of multi-antenna Gaussian channels," Europ. Trans. Telecommun, vol. 10, pp. 585-595, Nov./Dec. 1999.. https://doi.org/10.1002/ett.4460100604
  3. G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun, vol. 6, pp. 311-335, Mar. 1998. https://doi.org/10.1023/A:1008889222784
  4. D. J. Love, R. W. Heath, Jr., W. Santipach and M. L. Honig, "What is the value of limited feedback for MIMO channels," IEEE commun. Mag., vol. 42, No. 10, pp. 54-59, Oct. 2004. https://doi.org/10.1109/MCOM.2004.1341261
  5. S. G. Kim, Xun Li and Y. J. Kim, "Performance analysis of precoded LTE-Advanced uplink system," Journal of the Institute of Electronics Engineers of Korea, vol. 48, no. 5, pp. 418-425, May 2011.
  6. D. J. Love and R. W. Heath Jr., "Limited feedback unitary precodig for spatial multiplexing systems," IEEE Trans. Inform. Theory, vol. 51, pp. 2967-22976, Aug. 2005. https://doi.org/10.1109/TIT.2005.850152
  7. T. Abe and G. Bauch, "Differential codebook mimo precoding technique," in Proc. IEEE Global Telecommunications Conf. GLOBECOM' 07, pp. 3963-3968, 2007.
  8. T. J. Kim, D. J. Love, B. Clerckx, and S. J. Kim, "Differential rotation feedback mimo system for temporally correlated channels," in Proc. IEEE Global Telecommunications Conf. IEEE GLOBECOM 2008, pp. 1-5, 2008.
  9. T. Kim, D. J. Love, and B. Clerckx, "Mimo systems with limited rate differential feedback in slowly varying channels," IEEE Trans. Commun., vol. 59, no. 4, pp. 1175-1189, Apr. 2011.
  10. C.-p. Liang, J.-H. Jong, W. E. Stark, and J. R. East, "Nonlinear amplifier effects in communications systems," IEEE Trans. Microw. theory Tech., vol. 47, no. 8, pp. 1461-1466, Aug. 1999. https://doi.org/10.1109/22.780395
  11. C. R. Murthy and B. D. Rao, "Quantization methods for equal gain transmission with finite rate feedback," IEEE Trans. Signal Process., vol. 55, no. 1, pp. 233-245, Jan. 2007. https://doi.org/10.1109/TSP.2006.882097
  12. H. G. Myung and D. J. Goodman, Single Carrier FDMA, Wiley, 2008.
  13. S. A. Jafar and S. Srinivasa, "On the Optimality of Beamforming with Quantized Feedback," IEEE Trans. Commun., vol. 55, pp. 2288-2302, Dec. 2007. https://doi.org/10.1109/TCOMM.2007.910697
  14. T. J. Kim, D. J. Love, B. Clerckx, "MIMO systems with limited rate differential feedback in slowly varying channels," Communications IEEE Tran- sactions on, vol. 59, no. 4, pp. 1175-1189, Apr. 2011.
  15. D. J. Love, R. W. Heath, "Equal Gain Transmission in Multiple-Input Multiple-Output Wireless Systems," IEEE Trans. Commun., vol. 51, pp. 1102-1110, July 2003. https://doi.org/10.1109/TCOMM.2003.814195
  16. J. Zheng, E. R. Duni, and B. D. Rao, "Analysis of multiple-antenna systems with finite-rate feedback using high-resolution quantization theory," IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1461-1476, Apr. 2007. https://doi.org/10.1109/TSP.2006.889407
  17. S. G. Kim, Xun Li and Y. J. Kim, "Equal gain differential precoding technique for temporally correlated channels," Journal of the Institute of Electronics Engineers of Korea, vol. 49, no. 1, pp. 11-18, Jan. 2012.
  18. C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSWOFDM-Signal for a Digital Sound Broadcasting System," in Proceedings of the Second European Conference on Satellite Comm., Liege, Belgium, Oct. 1991.