Analysis of Electrical Features of Serially and Parallelly connected Memristor Circuits

직렬 및 병렬연결 멤리스터 회로의 전기적 특성 해석

  • Budhathoki, Ram Kaji (Electronic and Information Engineering Faculty,Chonbuk National University) ;
  • Sah, Maheshwar Pd. (Electronic and Information Engineering Faculty,Chonbuk National University) ;
  • Kim, Ju-Hong (Electronic and Information Engineering Faculty,Chonbuk National University) ;
  • Kim, Hyong-Suk (Electronic and Information Engineering Faculty,Chonbuk National University)
  • Received : 2011.11.24
  • Accepted : 2012.04.24
  • Published : 2012.05.25

Abstract

Memristor which is known as fourth basic circuit element has been developed recently but its electrical characteristics are not still fully understood. Memristor has the incremental and decremental feature of the resistance depending upon the connected polarities. Also, its operational behavior become diverse depending on its connection topologies. In this work, electrical characteristics of diverse types of serial and parallel connections are investigated using the HP $TiO_2$ model. The characteristics are analyzed with pinched hystersis loops on the V-I plane when sine input signal is applied. The results of the work would be utilized usefully for analyzing the characteristics of memristor element and applications to logic circuit and neuron cells.

저항, 콘덴서, 및 인턱터와 함께 4의 회로 소자로 알려진 멤리스터가 개발되었으나, 아직 그 전기적 특성이 충분히 해석되지 않고 있다. 멤리스터들은 연결된 극성에 따라서 저항이 증가 혹은 감소하며, 직렬 혹은 병렬연결 형태에 따라서 그 동작 특성이 다양해진다. 본 연구에서는 HP의 $TiO_2$ 멤리스터를 모델로 하여 다양한 직 병렬회로에 대한 전기적 특성을 분석하였다. 이를 위해서 사인파 입력신호에 대해서 나타나는 전압-전류 간의 히스테르시스 루프의 다양한 모양을 분석하였다. 본 멤리스터 연구결과는 멤리스터 소자에 대한 특성 이해와 논리 회로 및 뉴런 셀에의 응용회로들의 특성을 분석하는데 유용하게 사용될 수 있다.

Keywords

References

  1. L. O. Chua, "Memristor-the missing circuit element," IEEE Trans. Circuit Theory, vol. CT-18, no. 5, pp. 507-519, Sep. 1971.
  2. L. O. Chua and S. M Kang, "Memristive devices and systems," Proc. of IEEE, vol. 64, no. 2, pp. 209-223, Feb. 1976. https://doi.org/10.1109/PROC.1976.10092
  3. D. B. Strukov, G.S. Snider, D. R. Stewart and R. S. Williams, "The missing memristor found," Nature 453, pp. 80-83, 2008. https://doi.org/10.1038/nature06932
  4. Y. N. Joglekar and S. J. Wolf, "The elusive memristor: properties of basic electrical circuits, rXiv: 0807.3994v2 [cons-mat.mes-hall], Jan. 13, 2009. https://doi.org/10.1088/0143-0807/30/4/001
  5. B. O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-sarawi,and D. Abboti, "The fourth element: Characteristics, modeling and electromagnetic theory of the memristor," 2010, arXiv: 1002.3210v1 [cond-mat.mes-hall].
  6. S. Shin, K. Kim, and S. M. Kang, "Compact models for memristors based on charge-flux constitutive relationships," IEEE Trans. Comput.-AidedDes. Integr. Circuits Syst., vol. 29, no. 4, pp. 590-598, Apr. 2010. https://doi.org/10.1109/TCAD.2010.2042891
  7. E. M. Drakakis, S. N. Yaliraki, and M. Barahona, "Memristors and Bernoulli dynamics," in Proc. 2010 Int. Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Feb. 2010, pp.70-75.
  8. F. Y. Wang, "Memristor for introductory physics," 2008, arXiv: 0808.0286v1 [physics. Class-ph].
  9. A. Rak and G. Cserey, "Macromodelling of the memristor in SPICE," IEEE Trans. Comput.- Aided Des. Integr. Circuits Syst., vol. 29, no. 4,pp. 632-636, Apr. 2010. https://doi.org/10.1109/TCAD.2010.2042900
  10. Y. V. Pershin and M. D. Ventra, "Practical approach to programmable analog circuits with memristors," IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 57, no. 8, pp. 1857-1864, Aug. 2010. https://doi.org/10.1109/TCSI.2009.2038539
  11. J. Borghettil, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, "Memristive switches enable stateful logic operations via material implication," Nature Lett., vol. 464, no. 8, pp. 873-876,Apr. 2010. https://doi.org/10.1038/nature08940
  12. Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J.J. Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G.Medeiros-Ribeiro, and R. S. Williams, "Memristor-CMOS hybrid integrated circuits for reconfigurable logic," Nano Lett., vol. 9, no. 10, pp. 3640-3645, Sep. 2009, DOI: 10.1021/nl901874j.
  13. I. Petras, "Fractional-order memristor-based Chua's circuit," IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 57, no. 12, pp. 975-979,Dec. 2010. https://doi.org/10.1109/TCSII.2010.2083150
  14. H. Kim, M.P. Sah, C. Yang, T. Roska, and L. O. Chua "Neural synaptic weighting with a pulse-based memristor circuit," IEEE Trans. on Circuit and Systems-I, vol. PP, issue 99, 2011.
  15. H. Kim, M.P. Sah, C. Yang, T. Roska, and L. O. Chua "Memristor bridge synapses," (Accepted for publication and will appear in the Proceeding of IEEE.