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A Brief Overview of a Scale Independent Deformation Theory and 
Application to Diagnosis of Deformational Status of Solid-State Materials

Sanichiro Yoshida

Abstract A field theoretical approach to deformation and fracture of solid-state material is outlined, and its 
application to diagnosis of deformational status of metal specimens is discussed. Being based on a fundamental 
physical principle known as local symmetry, this approach is intrinsically scale independent, and capable of 
describing all stages of deformation on the same theoretical foundation. This capability enables us to derive 
criteria that can be used to diagnose transitions from the elastic to plastic regime, and the plastic to fracturing 
regime. For practical applications of these criteria, an optical interferometric technique known as electronic 
speckle-pattern interferometry is proved to be quite powerful; it is able to visualize the criteria as a whole image 
of the object on a real-time basis without numerical processing. It is demonstrated that this method is able to 
reveal loading hysteresis as well.
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1. Introduction

Structures and machines often fail after they 
pass periodic inspections, leading to catastrophic 
accidents. In particular, failures of aircrafts in 
normal flight shortly after they pass the 
pre-flight inspections are of extremely tragedy. 
They must be prevented. Currently prevailing 
inspection technologies mostly focus on the 
detection of cracks at the earliest stage as 
possible. Recent advancements in the related 
field such as ultrasonic technology allow 
inspectors to detect micro-cracks at an early 
stage. However, it is unclear whether the 
accidents occur due to micro-cracks overlooked 
during the inspection, or due to micro-cracks 
newly generated after the inspection. 

These problems arise partly from limitations 
of the theory that the inspection procedure is 
based on. The limitation of the current theory 

for accurate fracture prediction is mostly due to 
the lack of a solid physical foundation on which 
the stages before and after micro-cracks appear 
are connected. Conventional fracture mechanics 
[1] is successful for a number of applications, 
but it basically describes how a crack develops 
from its initial stage, and relies on elastic theory 
to formulate the fracturing process. If we can 
predict crack generation at an earlier stage, 
inspection technology will drastically advance, 
and the number of catastrophic accidents will be 
decreased. Development of inspection techniques 
based on a theory capable of describing 
deformation and fracture on the same theoretical 
foundation is essential.

In this respect, the field theoretical approach 
to deformation and fracture that the author has 
been studying for the last 20 years has great 
advantage[2-4]. The theoretical foundation of 
this approach is originally developed by Panin 
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Fig. 1 Conceptual figure of mapping

et al.[5,6]. Being based on a fundamental 
principle of physics known as local (gauge) 
symmetry[7], the theory is capable of describing 
deformation dynamics of all stages without 
relying on phenomenology; hence by nature, it 
is scale independent. It postulates that we can 
always find a local region where the 
deformation can be expressed by the formalism 
of conventional linear elasticity[8], and nonlinear 
dynamics in the plastic regime can be 
formulated as the interaction among those local 
dynamics. This interaction holds the entire 
object to be one continuum. When the global 
dynamics associated with this interaction stops 
operating, the material fractures.

This field theoretical approach derives plastic 
deformation and fracture criteria[9] that are 
fundamentally different from conventional 
approaches. Past experiments[10] support the 
validity of these criteria under certain conditions. 
For practical applications of this approach, an 
optical interferometric technique known as the 
electronic speckle‐pattern interferometry(ESPI) 
[11] is quite useful. It can visualize the criteria 
as a whole image of interferometric fringe 
pattern on a real-time basis.

The aim of this paper is to briefly outline 
the gist of the field theoretical approach and to 
discuss supporting ESPI experiments. One of the 
experiments demonstrates that the present plastic 
deformation and fracture criteria can be used to 
diagnose load hysteresis of metal specimen.

2. Theoretical Overview

2.1 Field Equation 

Details about the present field theory can be 
found elsewhere[2-5]. In short, its gist can be 
described as follows. In conventional continuum 
mechanics[12,13], deformation is described as an 
orientation preserving transformation (mapping) 
 of points on the material[12]. Usually, the 

initial (before the deformation) points are 
expressed in the Lagrangian coordinates affixed 
to the material, and the final (after the 
deformation) points are expressed in the 
Eulerian coordinates. The deformation is 
expressed by the deformation gradient tensor of 
the following form.

j

i

ij x
F

∂
∂

=
φ

     (1)

Here  is the i-th component in the final 
(Eulerian) coordinates and  is the j-th 
component in the initial (Lagrangian) 
coordinates. Note that eqn. (1) is expressed by 
the common differential operation. Note that we 
can use the same differential operation because 
the mathematical expressions of the “before” and 
“after” deformation are connected via the 
orientation preserving mapping .

Being an orientation preserving transformation, 
the mapping basically describes stretch and 
compression of the material, as each of  in Fig. 
1 illustrates schematically. This is why we can 
always find the principal coordinates system in 
which the strain and stress matrices have only 
normal components, not a shear component. This 
formalism is therefore inapplicable to the plastic 
regime where the deformation is nonlinear and 
cannot be expressed without shear components. 

The present field theory solves this problem 
as follows. The theory postulates[4] that in the 
plastic regime the deformation can still be 
described as linear elasticity if the volume of 
analysis is sufficiently small. This postulate can 
be justified by the fact that it is always possible 
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to find a local region where the inter-atomic 
potential can be approximated by a quadratic 
function of the inter-atomic distance. As an 
example, Lenard-Jones potential is quadratic near 
the equilibrium. Then the field theory postulates 
that in the plastic regime the material 
experiences a number of local linear elastic 
deformations where each of them can be 
expressed by the locally defined orientation- 
preserving mapping, as Fig. 1 illustrates 
schematically. 

This treatment brings some complexity 
regarding the operation of differentiation. Now 
that each local region has its own preserved 
orientation, the differentiation cannot be defined 
globally. In other words, if we displace from 
one global coordinate point to another, we know 
that the orientations associated with the local 
mapping of the first point and the second point 
are different. Consequently, if we find a 
difference in deformation, i.e., different values in 
the deformation gradient tensor between the two 
local deformations, it is not clear if the 
difference comes from the actual difference in 
deformation (physics) or from the difference in 
the local preserved orientations (geometry). To 
describe the deformation in the global 
coordinates, it becomes necessary to separate the 
change due to the physics and to the 
geometrical difference. The present field theory 
handles this problem by isolating the rotational 
part of kinematics from the formalism 
representing the deformation; more specifically, 
by viewing rotation as coordinate dependent 
potential not part of the deformation[4]. The 
local region that obeys linear elasticity is called 
the deformation structural element[2,6]. 

In this way, the entire formulation is divided 
into two portions; the first portion is to 
represent the deformation using the same 
formalism as the local linear elasticity in 
respective deformation structural elements, and 
the second portion is to represent rotation of 

structural deformation elements via the potential. 
Thus the law of elasticity is conserved, and at 
the same time, the nonlinearity is taken into 
consideration. The potential can be viewed as 
representing interaction among deformation 
structural elements. Naturally, when the entire 
material experiences linear elastic deformation, 
the potential becomes null. The situation is 
similar to general relativity and special relativity. 
When the space-time is curved, although special 
relativistic formalism hold locally, it is necessary 
to consider interaction among local frames, and 
the gravitational potential governs the interaction 
[14].  

The equations that govern the nonlinear 
dynamics can be derived through application of 
the least action principle to this potential[7]. 
After some mathematical procedures, the 
following governing equations can be derived 
[3-5]. Since these equations describe the field 
associated with the potential, they are called the 
field equations.   
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where   is the velocity,   is rotation of the 
material points and related to   by eqn. (3), 
and  is the phase velocity of the wave 
characteristics of the displacement field.  and 
  are known as the current of symmetry[7]. 
Explanations of the currents are given elsewhere 
[3,7]  

The physical meaning of each equation can 
be given as follows. The left-hand side of eqn. 
(2) represents the net flow of particles into a 
local region.  on the right-hand side represents 
the rate of material flowing out the unit volume. 
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If the mass of the local volume is multiplied, 
eqn. (2) represents the net momentum change. 
Eqn. (3) defines the rotation associated with the 
potential. Eqn. (4) represents the interaction 
between the translational and rotational mode of 
displacement. This is the most important 
equation from the viewpoint of dynamics in the 
plastic regime, and will be discussed in the next 
section. The last equation indicates that the 
dynamics associated with the rotation does not 
have a source. Instead, the rotational field exerts 

force via ∇×  in eqn. (4), as explained in 
more detail below.

2.2 Plastic Deformation Dynamics 

To explore the physical meaning of eqn. (4), 
let’s rearrange the terms as follows[2,4].
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Since  represents the phase velocity of a 
displacement wave, its square has a general form 
of density/stiffness. More detailed analysis [15] 
indicates that if we put the phase velocity as  
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eqn. (6) reduces to Cauchy’s equation of motion 
as below. 
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Here  is the density of the material, and  
and  are the first and second Lamé’s constant.

Eqn. (8) represents the net longitudinal force 
exerted by the neighboring volumes on the unit 
volume as the differential elastic force at the 
boundaries. Note that in the elastic case, the 
right-hand side of eqn. (6) has only longitudinal 

components. This is because linear elasticity is 
essentially an orientation preserving trans- 
formation as discussed above. This is evidenced 
by the fact that we can always find a principal 
coordinate system in which the stress and strain 
tensors have only normal components, not a 
shear component.     

 In the plastic regime, basically two changes 

happen. First,   does not represent longitudinal 
elastic force. Instead, it represents momentum 
flow out of the unit volume. To understand this 
let’s apply the divergence to both-hand sides of 

eqn. (6). Using the identity ∇ ․∇×   and 
eqn. (7) we obtain the following equation.
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Eqn. (10) is the so-called equation of 

continuity. From the form of this equation, 

can be identified as the flow of (∇ ․ ) that 
compensates the temporal change of (∇ ․ ) 
represented by the right-hand side. Since (∇ ․ ) 
is the divergence of the momentum from the 

unit volume,   can be identified as the 
temporal change in the differential momentum, 
which is basically the net external force 
(Newton’s second law). More detailed analysis 

[15] indicates that in this situation   can be 
put in the following form.
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Here   is the unit vector in the direction of the 
displacement wave propagating at the phase 
velocity  [eqn. (7)]. With the longitudinal 
effect not representing force, it does not have 
contribution to the wave dynamics.
   Consequently, in the plastic regime the 
displacement wave is transverse. With eqn. (11), 
the equation of motion in the plastic regime can 
be put as follows. 
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The second change in transition from the 
elastic to plastic regime is that the stress field 
starts to have shear components even expressed 
in the principal coordinate system. In other 
words, the deformation becomes non-orientation 
preserving, and consequently the dynamics, not 
the choice of the coordinate system, makes the 
shear component non-zero. This is the physical 
meaning of the first term on the right-hand side 
of eqn. (12).

2.3 Field Theoretical Criteria of Plastic 
Deformation and Fracture

The explanations in the preceding section 
lead to the following criteria regarding the 
transitional stages from the elastic to plastic 
regime (Stage 1 criterion) and the plastic to 
fracturing regime (Stage 2 criterion). 

2.3.1 Stage 1 Criterion

The first stage is that the displacement field 
starts to have rotational feature. This can be 
represented by

0≠×∇ ω
r

(13)

on the right-hand side of eqn. (12). From the 
field theoretical viewpoint, this is the stage 
where the material cannot be represented by a 
single orientation-preserving mapping. Conse- 
quently, the displacement field becomes 
rotational. From the viewpoint of energy 
dissipation, the second term on the right-hand 
side of eqn. (12) represents momentum loss of 
the unit volume by means of material flow out. 
At this stage, it does not represent vigorous 
momentum loss. However, since the longitudinal 
effect does not exert elastic force, the 
displacement field stops showing longitudinal 

wave characteristics. Instead, the ∇×  terms 
exert transverse (shear) recovery force, and 
consequently, the displacement field starts to 

shows transverse wave characteristics[16,17]. 
This transition can be observed as curved 
contours in the interferometric image patterns 
(fringe patterns). 

2.3.2 Stage 2 Criterion

The second stage is characterized as the 
final stage of deformation where dynamics is 
dominated by the energy dissipation represented 

by  . At the same time, the effect of the   
first term representing the transverse wave 
characteristics vanishes. This causes the transverse 
displacement wave to decay. At the same time, 

since the ∇×  term that causes the rotational 
feature of the displacement pattern vanishes, the 
displacement contours observed in the 
interferometric fringes patterns become straight.

More details about these criteria observed as 
the changes in the fringe patterns are discussed 
in the next section.

3. Experimental 

A number of optical interferometric 
experiments have been carried out to study the 
field theoretical approach[10,17,19,20]. In 
particular, the stage 1 and stage 2 criteria have 
been experimentally investigated under various 
conditions. In this section, some of these 
experiments are discussed.   

3.1 Electronic Speckle-Pattern Interferometry

Fig. 2 illustrates a typical arrangement of 
this type of experiment. The specimen is 
attached to a tensile machine, and pulled at a 
constant pulling rate. The interferometer is a 
typical dual-beam in-plane sensitive configura- 
tion, [11] consisting of a few mW-class 
helium-neon laser as the laser source, and 
optical systems comprised of a beam splitter, 
two folding mirrors and beam expanders. The 
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Fig. 2 Experimental arrangement with typical ESPI 
setup

CCD (charged couple device) camera takes 
images of the specimen at a constant frame rate 
as the tensile load is applied. The images taken 
by the CCD camera are transferred to computer 
memory where an image taken at each time step 
is subtracted from the image taken at a certain 
time steps before. In this fashion, the so-called 
subtraction fringe patterns such as the one 
shown in Fig. 3 are formed. Each dark stripe 
represents a contour of equi-displacement. When 
the interferometer is sensitive to horizontal 
displacement, as is the case of Fig. 2, the 
contours indicate horizontal displacement. 
Detailed information regarding ESPI can be 
found elsewhere[11].

3.2 Plastic Deformation and Fracture Criteria 

Fig. 3 shows interferometric fringe patterns 
obtained in a tensile analysis on a tin specimen 
[10]. In this experiment, a vertically sensitive 
ESPI setup is arranged in addition to the 
horizontal setup so that horizontal and vertical 
displacement data can be taken simultaneously. 
The specimen is 100 mm long, 20 mm wide and 
0.4 mm thick. One side of the specimen is 
curved as seen in Fig. 3 so that fracture is 
necessarily initiated on the known (curved) side. 
The horizontal width is narrowest (15 mm) at 
the vertical center. In Fig. 3, the images in the 
upper row are fringe patterns formed by the 
horizontally-sensitive ESPI setup (called the 
horizontally-sensitive fringe patterns) and those 
in the lower row are formed by the vertically- 

sensitive setup (vertically-sensitive fringe 
patterns). The plot in Fig. 4 is the loading 
characteristics recorded as the fringe patterns in 
Fig. 3 are formed. Labels (a) – (e) in Fig. 4 
indicate the loading level at which the images 
in Fig. 3 of the same label are formed.  

To examine the fringe patters from the 
viewpoint of the Stage 1 and Stage 2 criteria 
described in the preceding section, consider the 
physical meaning of the fringe patterns. Since 
the fringe patterns are formed by subtracting an 
image taken at a time from one taken at another 
time, the displacement contours are proportional 
to the displacement that each point of the 
material experiences between the two times. If 
the interferometer is sensitive to horizontal/ 
vertical displacement, the dark fringes represent 
contours of constant horizontal/vertical com- 
ponent (defined as the  and -component, 
respectively) of the displacement. Below we 
examine the expected fringe patterns for each 
criterion. 

(a) (b) (c) (d) (e)

41 H 402 H 2422 H 2741 H             3175 H

42 V 403 V 2423 V 2742 V             3176 V

Fig. 3 Horizontally (upper) and vertically-sensitive 
(lower) fringe patterns

Fig. 4 Loading characteristics 
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Table 1 Stage 1 conditions observed in fringe 
patterns

Interferometer’s 
sensitivity

∇× ≠ ∇×≠

Horizontal H-parabola tilted

Vertical tilted V-parabola

Table 2 Stage 2 conditions observed in fringe 
patterns

Interferometer 
sensitivity

( ) 0=×∇ xω
r ( ) 0=×∇ yω

r

Horizontal Linear // to x/y

Vertical // to x/y linear

3.2.1 Stage 1: Initiation of Plastic Deformation

Rewrite the condition ∇×≠ in 
two-dimensions in terms of the  and 
-components of the translational displacement 
(  and ). 

A fringe pattern formed by a horizontally- 
sensitive interferometer indicates conditions (14) 
and (15) via the first terms on the right-hand 
side as the fringes represent contours of  . 
Similarly, a fringe pattern formed by a 
vertically-sensitive interferometer indicates them 
via the second terms. This means that in a 

horizontally-sensitive fringe pattern, ∇× ≠ 

means the fringes have quadratic or higher 
dependence on  [the first term on the 
right-hand side of eqn. (14) is non-zero]. In other 
words, the fringes are at least horizontally 

parabolic. On the other hand, ∇×≠ 

means the fringes have both  and  
dependences, or at least they are tilted on the 
 plane. The features observed in a 
vertically-sensitive fringe pattern can be argued 
in the same fashion. Table 1 summarizes these 
features where “H/V-parabola“ and “tilted“ denote 
these features.

3.2.2 Stage 2: Initiation of Fracture

In Stage 2, the shear force becomes inactive 

making ∇× . In this situation, the only 
mechanism to change the acceleration of the 
unit volume [the left-hand side of eqn. (12)] is 
the momentum loss represented by eqn. (11). 
The fringe patterns are characterized by the 
following features. In a horizontally-sensitive 

fringe    pattern, ∇×   makes 

0/ 22 =∂∂ yxξ  or the corresponding fringe a 

straight line. ∇×    makes 

0/2 =∂∂∂ yxyξ  or the corresponding fringe 
becomes a straight line parallel to either the  
or  axis. The features observed in a 
vertically-sensitive fringe pattern can be argued 
in the same way, as shown in Table 2. Here  
to  denotes that straight fringes parallel to 
the  or  axis.   

Now observe fringe patterns in Fig. 3 from 
this viewpoint. At time (a), both the 
horizontally- and vertically-sensitive fringe 
patterns show straight fringes, indicating that at 
this stage deformation is still elastic (Stage 1 
condition has not been satisfied) and therefore, 
∇×  . At times (b) and (c), the 

horizontally-sensitive fringes show a horizontal 
parabola near the middle and straight lines 
toward the lower end. This indicates that near 
the middle of the specimen the deformation is 
plastic whereas towards the end where the width 
is greater the deformation is still elastic. The 
vertical fringe pattern shows the corresponding 
feature. Loading characteristics in Fig. 4 
indicates that at times (b) and (c) the 
deformation is apparently in the plastic regime. 
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Fig. 5 Loading curve of the initial (preload) pull

Fig. 6 Fringe patterns observed in the preload

At time (d), the horizontal fringe pattern clearly 

shows the feature identified as ∇×    

while the feature representing ∇×   is 

not observed. The loading curve at this time is 
near the ultimate strength. These altogether can 
be interpreted as at this stage the material still 
exerts the vertical force but not horizontal force. 
The vertically-sensitive fringe pattern show 
features consistent with the horizontally-sensitive 
fringe pattern. Very interestingly, this straight- 
line pattern sweeps across the width of the 
specimen from the right to left. This can be 
interpreted as the specimen meets the Stage 2 
criterion from the right side.   

3.3 Residual Stress Analysis 

In the next series of experiments[20], the 
same idea is applied to analysis of load 
hysteresis. The specimen (0.5 mm-thick pure 
aluminum sheet cut into 4 mm in gauge width 
and 25 mm in gauge length, and subsequently 
annealed at 400 °C for 30 min.) is initially 
tensile loaded to a certain stress level 
(preloaded), and after removal of the preload, it 
is reloaded to various stress levels. Then the 
fringe patterns resulting from the reloading are 
examined regarding whether or not the effect of 
the initial load is revealed as any specific 
features in the shape of the fringes. Fig. 5 
shows three load levels at which the analyses 
are made. The interferometer used in this 
analysis is sensitive to horizontal displacement, 
whereas the tensile direction is also horizontal.

In the first experiment, the specimen is 
loaded till fracture for the purpose of obtaining 
the baseline data. Fig. 6 shows the fringe patterns 
observed in this experiment at the stress level 
indicated at the top left corner of each image.

In the second experiment, the specimen is 
preloaded to 30 MPa (point A in Fig. 5), and 
reloaded to the same stress level of 30 MPa 
after released from the preload. Fig. 7 compares 

the fringe patterns observed at 30 MPa in the 
preload (upper) and in the reload (lower). These 
fringe patterns show clear distinctions. In the 
initial pull (preload), the fringes are mostly 
vertical, slightly inclined clockwise, whereas 
some (e.g., the rightmost fringe) show the 
parabolic nature discussed above (see text near 
Table 1). The fringes observed at 30 MPa on 
the second pull (reload), on the other hand, are 
wavy and mostly horizontal. The wavy part 
clearly shows the parabolic nature. In 
accordance with Table 1 under the row labeled 
“Horizontal”, the pattern observed in the reload 
indicates that the specimen exerts resisting force 

proportional to ∇×  both in the horizontal 
and vertical directions. The observed difference 
between the preload and reload can be 
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Fig. 7 Reload experiment on aluminum specimen. 
(a): initial pull at 30 MPa, (b) second pull 
at 30 MPa (preload at 30 MPa)

qualitatively explained as follows. When the 
specimen is loaded to 30 MPa in the initial pull, 
the material already experiences partial plastic 
deformation. Both the first term representing 
recovery force and the second term representing 
the energy-dissipative plastic effect are active on 
the right-hand side of eqn. (12). However, at 
this stage, the overall deformation is dominantly 
elastic. Consequently, the fringes are mostly 
vertical and straight. The plastic effect is 
observed in that the fringes are tilted (≠) 
and some are somewhat parabolic 

(∇× ≠). The tilting effect is caused by 

the fact that the material experiences greater 
stretch towards the bottom side of the specimen 
than the top side (that is why the fringes are 
denser near the bottom than the top of the 
specimen). This excess stretch (lateral 
differential displacement) is due to permanent 
deformation (i.e., the material experiences partial 
yield near the bottom side). Since this 
phenomenon takes place gradually, the fringe tilt 
observed at each time step of fringe pattern 
formation is small. 

When the specimen is released from the 
preload, the deformation is recovered as much 
as the recoverable portion associated with the 
recovery force represented by the first term on 
the right-hand side of eqn. (12). The excess 
stretch discussed in the preceding paragraph is 
not recovered. Therefore, when the specimen is 
reloaded to the same stress level as the preload, 
only the recoverable portion of displacement is 

observed. Being proportional to ∇× , the 
corresponding fringes are wavy (vortex-like).

It is interesting to note that the curvatures of 
the parabolic fringe pattern observed in Figs. 3 
and 6 are substantially different (both are 
observed in the initial pull). Based on the same 
idea as the above-mentioned excess stretch near 
one side of the specimen, it is natural to assume 
that the greater the degree of differential 
displacement, the steeper the parabolic curvature. 

From this viewpoint, it is reasonable to say that 
the specimen in Fig. 3, which has horizontal 
asymmetry in such a way that the curved side 
is weaker than the straight side, experiences 
greater differential displacement than the case 
where both sides are straight, and therefore 
shows a steeper curvature in the parabolic fringe 
pattern.  

In the third experiment, the specimen is 
preloaded to 55 MPa in the initial pull, and the 
fringe patterns are examined at 25 MPa (lower 
than the preload level) and 65 MPa (higher than 
the preload) in the second pull.

Fig. 8 Reload experiment on aluminum specimen 
up to 55 MPa. (a): initial pull 55 MPa, (b): 
reload at 25 MPa after preloaded to 55 MPa, 
and (c) reload at 65 MPa after preloaded to 
55 MPa, (d) initial pull at 65 MPa
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4. Conclusions

The gist of the field theoretical approach has 
been presented. The Stage 1 and Stage 2 criteria 
of plastic deformation derived by the field 
theoretical approach have been applied to 
diagnosis of deformational status of metal 
specimens. The features observed in the 
interferometric fringe patterns are consistent with 
the criteria. The hysteresis of loading on 
aluminum specimens have been revealed by this 
technique. Other applications to nondestructive 
evaluation of metal objects are expected. As to 
field applications of load hysteresis analysis, this 
technology in the current form has limitations; it 
requires an external load to form fringe patterns 
to be examined. In many occasions, application 
of external loads to the object under inspection 
is difficult. Further investigation to improve this 
aspect is necessary. 
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