DOI QR코드

DOI QR Code

Changes in the antioxidant enzyme activities of rock bream Oplrgnathus fasciatus administrated with Zn-supplemented diets

아연(Zn) 첨가사료의 투여에 따른 돌돔, Oplegnathus fasciatus의 항산화효소활성의 변화

  • Kim, Young-Sug (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • 김용석 (부경대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2011.08.02
  • Accepted : 2012.03.22
  • Published : 2012.04.30

Abstract

The objective of this study was to investigate the antioxidant enzyme (superoxide dismutase, SOD; glutathione, GSH; glutathione peroxidase, GPx) activities in liver and gill of rock bream, Oplegnathus fasciatus fed the experimental diets for 40 days. The experimental diets were prepared by adding with 30, 60 120 and 240 mg/kg to a commercial diet. In the liver, there were significant increases in SOD at 30~240 mg/kg. GPx activities of liver also were significantly increased at 30~120 mg/kg. The increased activities of SOD and GSH in the gills were observed in the 120 and 240 mg/kg, hence, GPx activity of gill exposed to lower concentrations of zinc (60~240 mg/kg) showed significant augmentation.

우리나라의 주요 해산양식어종인 돌돔, Oplegnathus fasciatus을 대상으로 30, 60, 120 및 240 mg/kg의 아연을 40일 동안 경구 투여에 따른 아가미와 간의 항산화효소 활성의 변화를 검토하였다. 돌돔 간의 superoxide dismutase(SOD) 활성은 30~240 mg/kg 아연농도, glutathione peroxidase (GPx) 활성은 30~120 mg/kg의 아연농도에서 유의적으로 증가하였다. 돌돔 아가미의 SOD 및 Glutathione(GSH) 활성은 120 및 240 mg/kg 아연농도, GPx활성은 60~240 mg/kg의 아연농도에서 유의한 증가가 관찰되었다.

Keywords

References

  1. Amira, A.S. and Amal, A.E.: Effet of dietary zinc on lipid peroxidation, glutathione, protein thiols levels and superoxide dismutase activity in rat tissues. Int. J. Cell. Biol., 27:89-95. 1995. https://doi.org/10.1016/1357-2725(94)00053-0
  2. Bray, T.M. and Bettger, W.J.: Physiological role zinc as an antitoxidant. Free Radic. Biol. Med., 8:281. 1990. https://doi.org/10.1016/0891-5849(90)90076-U
  3. Dallinger, R. and Kautzky, H.: The importance of contaminated food for the uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia, 67:82-89. 1985. https://doi.org/10.1007/BF00378455
  4. Friverg, I. and Vostal, J., Mercury in the environment. CRS Press(develand), ISI. 1972.
  5. Geeta, S., Ravindra, N. and Kiran, D.G.: Effect of ethanol on Cd-induced lipid peroxidation and antioxidant enzymes in rat liver. Biochem. Pharmacol., 42:S9-S16. 1991. https://doi.org/10.1016/0006-2952(91)90386-J
  6. Gropper, S.S., Smith, J.L. and Groff, J.L.: Advanced Nutrition and Human Metabolism. 4th ed. Belmont:Thomson Wadsworth; pp. 417-445. 2005.
  7. Hill, C.H. and Matrone, G.: Chemical parameters in the study of in vivo and in vitro interactions of transition element. Ged. Proc., 29:14-74. 1970.
  8. NRC(National Rearch Council).: Nutrient Requirements of fish. National Acad. Press, Washington, D.C. pp. 114. 1993.
  9. Ogino, C. and Yang, G.Y.: Requirement of rainbow trout for dietary zinc. Bull. Jpn. Soc. Sci. Fish., 42:793-799. 1978.
  10. Ogino, C. and Yang, G.Y.: Requirement of carp for dietary zinc. Bull. Jpn. Soc. Sci. Fish., 46:455-458. 1979.
  11. Samman, S.: Dietary versus cellular zinc : The antioxidant paradox. Free Radic. Biol. Med., 14:95-96. 1993. https://doi.org/10.1016/0891-5849(93)90514-U
  12. Shils, M.E., Shike, M., Ross, A.C., Caballero, B. and Cousins, R.J.: Modern Nutrition in Health and Disease. 10th ed. Philadelphia:Lippincott Williams & Wilkins, pp. 271-285. 2005.
  13. Singh, K.P., Zaidi, S.I A., Raisuddin, S., Saxena, A.K., Murthy, R.C. and Ray, P.K.: Effect of zinc on immune functions and host resistance against infection and tumor challenge. Immuno-pharmacol. Immunotoxicol., 14:813-840. 1992.
  14. Sorensen, E.M.B.: Metal Poisoning in Fish. CRC, Boca Raton, FL, USA. 1991.
  15. Spilttgerber, A.G. and Tappel, A.L.: Inhibition of glutathione peroxidase by cadmium and other metal ions. Arch. Biochem. Biophys., 197(2):534-542. 1979. https://doi.org/10.1016/0003-9861(79)90277-7
  16. Taylor, C.G. and Bray, T.M.: Effects of hyperoxia on oxygen free radical defense enzymes in the lung of Zn-deficient rats. J. Nutr., 121(4):460-466. 1991. https://doi.org/10.1093/jn/121.4.460
  17. Zhou, Y., Hu, X., Dou, C., Liu, H., Wang, S. and Shen, P.: Structural studies on metal-serum albumin IV. The interaction of Zn(II), Cd(II) and Hg(II) with HSA and BSA. Biophys. Chem., 42(2):201-211. 1992. https://doi.org/10.1016/0301-4622(92)85010-2
  18. 김현숙, 조경옥. 아연 수준이 비만 쥐의 당대사와 혈청 아연, 마그네슘, 크롬 함량에 미치는 영향. J. Kor. Soc. Food. Sci. Nutr., 38(9),: 1174-1178. 2009. https://doi.org/10.3746/jkfn.2009.38.9.1174
  19. 송미영, 정영진. 아연 보충이 젊은 여성의 혈청 콜레스테롤 농도에 미치는 영향. 한국영양학회지 23,: 237-247. 1990.
  20. 이상민, 박승렬. 사료의 P, Ca, Zn, Mg, Fe, K, Mn과 Se이 조피볼락의 성장 및 체성분에 미치는 영향. J. Kor. Fish. Soc., 31(2):245-251. 1998.
  21. 조수열, 김명주. 식이성 아연 수준이 카드뮴 중독에 미치는 영향. J. Kor. Soc. Food. Sci. Nutr., 23(4):574-580. 1994.