DOI QR코드

DOI QR Code

Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows

댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구

  • Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • Jung, Kwang-Hyo (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
  • 박일룡 (동의대학교 조선해양공학과) ;
  • 정광효 (동의대학교 조선해양공학과)
  • Received : 2011.12.29
  • Accepted : 2012.05.15
  • Published : 2012.06.20

Abstract

Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

Acknowledgement

Supported by : 동의대학교

References

  1. Cebeci, T. & Bradshaw, P., 1977. Momentum Transfer in Boundary Layers. Hemisphere publishing Corporation, New York.
  2. Colagrossi, A. & Landrini, M., 2003. Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics. Journal of Computational Physics, 191(2), 448-475. https://doi.org/10.1016/S0021-9991(03)00324-3
  3. Colicchio, G. Colagrossi, A. Greco, M. & Landrini, M., 2002. Free-Surface Flow after a Dam Break: a Comparative Study. Ship Technology Research, 49(3), pp.95-104.
  4. Cox, D.T. Kobayashi, N. & Okayasu, A., 1994. Vertical variations of fluid velocities and shear stress in surf zones. Proc. 24th Intl Conf. Coastal Engng ASCE, pp.98-112.
  5. Ferziger, J.H. & Peric, M., 1996. Computational Methods for Fluid Dynamics. Springer: Heidelberg.
  6. Greco, M. Faltinsen, O.M. & Landrini, M., 2005. Shipping of water on a two-dimensional structure. Journal of Fluid Mechanics, 525, pp.309-332. https://doi.org/10.1017/S0022112004002691
  7. Greco, M. Landrini, M. & Faltinsen, O.M., 2004. Impact Flows and Loads on Ship-Deck Structures. Journal of Fluids and Structures, 19(3), 251-275. https://doi.org/10.1016/j.jfluidstructs.2003.12.009
  8. Kim, C.H. Lee, Y.G. & Jeong, K.L., 2011. A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method. Journal of the Society of Naval Architects of Korea, 48(6), pp.560-568. https://doi.org/10.3744/SNAK.2011.48.6.560
  9. Kim, Y.I. Nam, B.W. & Kim, Y.H., 2007. Study on the Effects of Computational Parameters in SPH Method. Journal of the Society of Naval Architects of Korea, 44(4), pp.398-407. https://doi.org/10.3744/SNAK.2007.44.4.398
  10. Launder, B.E. & Spalding, D.B., 1974. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3(2), pp.269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  11. Martine, J.C. & Moyce, W.J., 1952. An Experimental Study of the Collapse Liquid Columns on a Rigid Horizontal Plate. Phil. Trans. Roy. Soc. London A. Math., Phys. Eng. Sci, 244, pp.312-324. https://doi.org/10.1098/rsta.1952.0006
  12. Nikuradse, J., 1933. Stromungsgesetze in rauhen Rohren. Forschung Arb. Ing.-Wes. No. 361.
  13. Park, I.R. Kim, K.S. Kim, J. & Van, S.H., 2009. A Volume-Of-Fluid Method for Incompressible Free-Surface Flows. International Journal for Numerical Methods in Engineering, 61(12), pp.1331-1362. https://doi.org/10.1002/fld.2000
  14. Park, I.R. Kim, K.S. Kim, J. & Van, S.H., 2010. Numerical Simulation of Free Surface Flow Using a Refined HRIC VOF Method. Journal of the Society of Naval Architects of Korea, 47(3), pp.279-290. https://doi.org/10.3744/SNAK.2010.47.3.279
  15. Park, I.R. Kim, W.J. Kim, J. & Van, S.H., 2005. A Study on a VOF Method for the Improvement of Free Surface Capturing. Journal of the Society of Naval Architects of Korea, 42(2), pp.88-97. https://doi.org/10.3744/SNAK.2005.42.2.088
  16. Ritter, A., 1892. Die Fortpflanzung der Wasserwellen:. Z. Vereines Deutsch. Ing, 36(33), pp.947-954.
  17. Shin, S.M. Kim, I.C. & Kim, Y.G., 2010. Numerical Simulation of Free Surface Flows Using the Roe's Flux-difference Splitting Scheme. Journal of the Society of Naval Architects of Korea, 47(1), pp.11-19. https://doi.org/10.3744/SNAK.2010.47.1.011
  18. Tsui, Y.Y. Lin, S.W. & Wu, T.C., 2009. Flux-blending schemes for interface capture in two-fluid flows. International Journal of Heat and Mass Transfer, 52(23-24), pp.5547-5556. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.026
  19. Ubbink, O. & Issay, R.I., 1999. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. Journal of Computational Physics, 153(1), pp.26-50. https://doi.org/10.1006/jcph.1999.6276
  20. Van Leer, B.J., 1979. Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's Method. Journal of Computational Physics, 32, pp.101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  21. Violeau, D. & Issa, R., 2007. Numerical Modeling of Complex Turbulent Free-Surface Flows with the SPH Method: an overview. International Journal for Numerical Methods in Fluids, 53(2), pp.277-304. https://doi.org/10.1002/fld.1292
  22. Zhou, Z.Q. De Kat, J.O. & Buchner, B., 1999. A nonlinear 3-D Approach to Simulate Green Water Dynamics on Deck. Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nantes, FRANCE. pp.5.1-1, 15.

Cited by

  1. Study on Improvement in Numerical Method for Two-phase Flows Including Surface Tension Effects vol.27, pp.5, 2013, https://doi.org/10.5574/KSOE.2013.27.5.070
  2. NUMERICAL ANALYSIS OF THE HYDRAULIC CHARACTERISTICS OF ICE-HARBOR TYPE FISHWAY vol.20, pp.3, 2015, https://doi.org/10.6112/kscfe.2015.20.3.15