DOI QR코드

DOI QR Code

Arabidopsis SIZ1 positively regulates alternative respiratory bypass pathways

  • Park, Bong-Soo (Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Kim, Sung-Il (Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Song, Jong-Tae (School of Applied Biosciences, Kyungpook National University) ;
  • Seo, Hak-Soo (Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University)
  • Received : 2012.01.16
  • Accepted : 2012.03.06
  • Published : 2012.06.30

Abstract

Plant mitochondria possess alternative respiratory pathways mediated by the type II NAD(P)H dehydrogenases and alternative oxidases. Here, E3 SUMO ligase was shown to regulate alternative respiratory pathways and to participate in the maintenance of carbon and nitrogen balance in Arabidopsis. The transcript abundance of the type II NAD(P)H dehydrogenases NDA2 and NDB2 and alternative oxidases AOX1a and AOX1d genes was low in siz1-2 mutants compared to that in wild-type. The addition of nitrate or ammonium resulted in a decrease or an increase in the expression of the same gene families, respectively, in both wild-type and siz1-2 mutants. The amount of free sugar (glucose, fructose and sucrose) was lower in siz1-2 mutants than that in wild-type. These results indicate that low nitrate reductase activity due to the AtSIZ1 mutation is correlated with an overall decrease in alternative respiration and with a low carbohydrate content to maintain the carbon to nitrogen ratio in siz1-2 mutants.

Keywords

References

  1. Gojon, A., Krouk, G., Perrine-Walker, F. and Laugier, E. (2011) Nitrate transceptor(s) in plants. J. Exp. Bot. 62, 2299-2308. https://doi.org/10.1093/jxb/erq419
  2. Crawford, N. M., Smith, M., Bellissimo, D. and Davis, R. W. (1988) Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc. Natl. Acad. Sci. U.S.A. 85, 5006-5010. https://doi.org/10.1073/pnas.85.14.5006
  3. Trumpower, B. L. and Gennis, R. B. (1994). Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu. Rev. Biochem. 63, 675-716. https://doi.org/10.1146/annurev.bi.63.070194.003331
  4. Douce, R. and Neuburger, M. (1989). The uniqueness of plant mitochondria. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371-414. https://doi.org/10.1146/annurev.pp.40.060189.002103
  5. Jarmuszkiewicz, W., Sluse-Goffart, C. M., Vercesi, A. E. and Sluse, F. E. (2001) Alternative oxidase and uncoupling protein: thermogenesis versus cell energy balance. Biosci. Rep. 21, 213-222. https://doi.org/10.1023/A:1013656510245
  6. Fernie, A. R., Carrari, F. and Sweetlove, L. J. (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7, 254-261. https://doi.org/10.1016/j.pbi.2004.03.007
  7. Moller, I. M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561-591. https://doi.org/10.1146/annurev.arplant.52.1.561
  8. Raghavendra, A. S. and Padmasree, K, (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 8, 546- 553. https://doi.org/10.1016/j.tplants.2003.09.015
  9. Hanak, P. and Jezek, P. (2001) Mitochondrial uncoupling proteins and phylogenesis-UCP4 as the ancestral uncoupling protein. FEBS Lett. 495, 137-141. https://doi.org/10.1016/S0014-5793(01)02338-9
  10. Michalecka, A. M., Svensson, A. S., Johansson, F. I., Agius, S. C., Johanson, U., Brennicke, A., Binder, S. and Rasmusson, A. G. (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol. 133, 642-652. https://doi.org/10.1104/pp.103.024208
  11. Saisho, D., Nambara, E., Naito, S., Tsutsumi, N., Hirai, A. and Nakazono, M. (1997) Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Mol. Biol. 35, 585-596. https://doi.org/10.1023/A:1005818507743
  12. Thirkettle-Watts, D., McCabe, T. C., Clifton, R., Moore, C., Finnegan, P. M., Day, D. A. and Whelan, J. (2003) Analysis of the alternative oxidase promoters from soybean. Plant Physiol. 133, 1158-1169. https://doi.org/10.1104/pp.103.028183
  13. Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A. S., Raghothama, K. G., Baek, D., Koo, Y. D., Jin, J. B., Bressan, R. A., Yun, D. J. and Hasegawa, P. M. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. U.S.A. 102, 7760-7765. https://doi.org/10.1073/pnas.0500778102
  14. Yoo, C. Y., Miura, K., Jin, J. B., Lee, J., Park, H. C., Salt, D. E., Yun, D. J., Bressan, R. A. and Hasegawa, P. M. (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol. 42, 1548-1558.
  15. Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H. S., Zhang, X. and Chua, N. H. (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell. 19, 2952-2966. https://doi.org/10.1105/tpc.106.049981
  16. Lee, J., Nam, J., Park, H. C., Na, G., Miura, K., Jin, J. B., Yoo, C. Y., Baek, D., Kim, D. H., Jeong, J. C., Kim, D., Lee, S. Y., Salt, D. E., Mengiste, T., Gong, Q., Ma, S., Bohnert, H. J., Kwak, S. S., Bressan, R. A., Hasegawa, P. M. and Yun, D. J. (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J. 49, 79-90.
  17. Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., Ashworth, E. N., Bressan, R. A., Yun, D. J. and Hasegawa, P. M. (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 9, 1403-1414.
  18. Garcia-Dominguez, M., March-Diaz, R. and Reyes, J. C. (2008). The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins. J. Biol. Chem. 283, 21469-21477. https://doi.org/10.1074/jbc.M708176200
  19. Jin, J. B., Jin, Y. H., Lee, J., Miura, K., Yoo, C. Y., Kim, W. Y., Van Oosten, M., Hyun, Y., Somers, D. E., Lee, I., Yun, D. J., Bressan, R. A. and Hasegawa, P. M. (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J. 53, 530-540.
  20. Miura, K. and Ohta, M. (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J. Plant Physiol. 167, 555-560. https://doi.org/10.1016/j.jplph.2009.11.003
  21. Park, B. S., Song, J. T. and Seo, H. S. (2011). Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat. Commun. 2:400 doi: 10.1038/natcomms1408.
  22. Escobar, M. A., Geisler, D. A. and Rasmusson, A. G. (2006) Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J. 45, 775-788. https://doi.org/10.1111/j.1365-313X.2005.02640.x
  23. Thorsteinsson, B. and Tillberg, J. (1990) Changes in photosynthesis, respiration ratio and levels of few carbohydrates in leaves of nutrient-depleted barley and pea. J. Plant Physiol. 136, 532-537. https://doi.org/10.1016/S0176-1617(11)80209-9
  24. Paul, M. J. and Stitt, M. (1993) Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant Cell Environ. 16, 1047-1057. https://doi.org/10.1111/j.1365-3040.1996.tb02062.x
  25. Watanabe, C. K., Hachiya, T., Terashima, I. and Noguchi, K. (2008) The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of antioxidant defence systems in Arabidopsis thaliana leaves. Plant Cell Environ. 31, 1190-1202. https://doi.org/10.1111/j.1365-3040.2008.01834.x
  26. Kromer, S. (1995) Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 45-70. https://doi.org/10.1146/annurev.pp.46.060195.000401
  27. Huppe, H. C. and Turpin, D. H. (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 577-607. https://doi.org/10.1146/annurev.pp.45.060194.003045
  28. Bloom, A. J., Sukrapanna, S. S. and Warner, R. L. (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 1294-1301. https://doi.org/10.1104/pp.99.4.1294
  29. Cramer, M. D. and Lewis, O. A. M. (1993) The influence of $NO_{3}^{-}$ and $NH_{4}^{+}$ nutrition on the gas exchange characteristics of the roots of wheat (Triticum aestivum) and maize (Zea mays) plants. Ann. Bot. 72, 37-46. https://doi.org/10.1006/anbo.1993.1078
  30. de Visser, R. (1985) Efficiency of respiration and energy requirements of N assimilation in roots of Pisum sativum. Physiol. Plant. 65, 209-218. https://doi.org/10.1111/j.1399-3054.1985.tb02384.x
  31. Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K. and Stitt, M. (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 136, 2483-2499. https://doi.org/10.1104/pp.104.047019
  32. Sieger, S. M., Kristensen, B. K., Robson, C. A., Amirsadeghi, S., Eng, E. W. Y., Abdel-Mesih, A., Møller, I. M. and Vanlerberghe, G. C. (2005) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J. Exp. Bot. 56, 1499-1515. https://doi.org/10.1093/jxb/eri146
  33. Noguchi, K. and Terashima, I. (2006) Responses of spinach leaf mitochondria to low N availability. Plant Cell Environ. 29, 710-719. https://doi.org/10.1111/j.1365-3040.2005.01457.x
  34. Miyashita, Y. and Good, A. G. (2008) NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J. Exp. Bot. 59, 667-680. https://doi.org/10.1093/jxb/erm340

Cited by

  1. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism inArabidopsis thaliana vol.56, pp.12, 2015, https://doi.org/10.1093/pcp/pcv149
  2. Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid 2016, https://doi.org/10.1080/15592324.2016.1179417