DOI QR코드

DOI QR Code

Affinity between TBC1D4 (AS160) phosphotyrosine-binding domain and insulin-regulated aminopeptidase cytoplasmic domain measured by isothermal titration calorimetry

  • Park, Sang-Youn (School of Systems Biomedical Science, Soongsil University) ;
  • Kim, Keon-Young (School of Systems Biomedical Science, Soongsil University) ;
  • Kim, Sun-Min (School of Systems Biomedical Science, Soongsil University) ;
  • Yu, Young-Seok (School of Systems Biomedical Science, Soongsil University)
  • Received : 2012.02.09
  • Accepted : 2012.03.12
  • Published : 2012.06.30

Abstract

Uptake of circulating glucose into the cells happens via the insulin-mediated signalling pathway, which translocates the glucose transporter 4 (GLUT4) vesicles from the intracellular compartment to the plasma membrane. Rab GTPases are involved in this vesicle trafficking, where Rab GTPases-activating proteins (RabGAP) enhance the GTP to GDP hydrolysis. TBC1D4 (AS160) and TBC1D1 are functional RabGAPs in the adipocytes and the skeletonal myocytes, respectively. These proteins contain two phosphotyrosine-binding domains (PTBs) at the amino-terminus of the catalytic RabGAP domain. The second PTB has been shown to interact with the cytoplasmic region of the insulin-regulated aminopeptidase (IRAP) of the GLUT4 vesicle. In this study, we quantitatively measured the ${\sim}{\mu}M$ affinity ($K_D$) between TBC1D4 PTB and IRAP using isothermal titration calorimetry, and further showed that IRAP residues 1-49 are the major region mediating this interaction. We also demonstrated that the IRAP residues 1-15 are necessary but not sufficient for the PTB interaction.

Keywords

References

  1. Watson, R. T. and Pessin, J. E. (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci. 31, 215-222. https://doi.org/10.1016/j.tibs.2006.02.007
  2. Zerial, M. and McBride, H. (2001) Rab proteins as membrane organizers. Nat. Rev. Mol. Cell. Biol. 2, 107-119. https://doi.org/10.1038/35052055
  3. Stenmark, H. (2009) Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell. Biol. 8, 513-525.
  4. Kane, S., Sano, H., Liu, S. C. H., Asara, J. M., Lane, W. S., Garner, C. W. and Lienhard, G. E. (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 277, 22115-22118. https://doi.org/10.1074/jbc.C200198200
  5. Sano, H., Kane, S., Sano, E., Mîinea, C. P., Asara, J. M., Lane, W. S., Garner, C. W. and Lienhard, G. E. (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem. 278, 14599-14602 https://doi.org/10.1074/jbc.C300063200
  6. Park, S. Y., Jin, W., Woo, J. R. and Shoelson, S. E. (2011) Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGAP domains reveal critical elements for GLUT4 translocation. J. Biol. Chem. 286, 18130-18138. https://doi.org/10.1074/jbc.M110.217323
  7. Schultz, J. , Milpetz, F., Bork, P. and Ponting, C. P. (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. U.S.A. 95, 5857-5864. https://doi.org/10.1073/pnas.95.11.5857
  8. Uhlik, M. T., Temple, B., Bencharit, S., Kimple, A. J., Siderovski, D. P. and Johnson, G. L. (2005) Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345, 1-20. https://doi.org/10.1016/j.jmb.2004.10.038
  9. Peck, G. R., Ye, S., Pham, V., Fernando, R. N., Macaulay, S. L., Chai, S. Y. and Albiston, A. L. (2006) Interaction of the Akt substrate, AS160, with the glucose transporter 4 vesicle marker protein, insulin-regulated aminopeptidase. Mol. Endocrinol. 20, 2576-2583. https://doi.org/10.1210/me.2005-0476
  10. Keller, S. R., Scott, H. M., Mastick, C. C., Aebersold, R. and Lienhard, G. E. (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J. Biol. Chem. 270, 23612-23618. https://doi.org/10.1074/jbc.270.40.23612
  11. Ross, S. A., Scott, H. M., Morris, N. J., Leung, W.-Y., Mao, F., Lienhard, G. E. and Keller, S. R. (1996) Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocyte. J. Biol. Chem. 271, 3328-3332. https://doi.org/10.1074/jbc.271.6.3328
  12. Waters, S. B., D'Auria, M., Martin, S. S., Nguyen, C., Kozma, L. M. and Luskey, K. L. (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J. Biol. Chem. 272, 23323-23327. https://doi.org/10.1074/jbc.272.37.23323
  13. Katagiri, H., Asano, T., Yamada, T., Aoyama, T., Fukushima, Y., Kikuchi, M., Kodama, T. and Oka, Y. (2002) Acyl-coenzyme a dehydrogenases are localized on GLUT4-containing vesicles via association with insulin-regulated aminopeptidase in a manner dependent on its dileucine motif. Mol. Endocrinol. 16, 1049-1059. https://doi.org/10.1210/me.16.5.1049
  14. Tojo, H., Kaieda, I., Hattori, H., Katayama, N., Yoshimura, K., Kakimoto, S., Fujisawa, Y., Presman, E., Brooks, C. C. and Pilch, P. F. (2003) The formin family protein, FHOS, interacts with the insulin-responsive aminopeptidase and profilin IIa. Mol. Endocrinol. 17, 1216-1229. https://doi.org/10.1210/me.2003-0056
  15. Hosaka, T., Brooks, C. C., Presman, E., Kim, S. K., Zhang, Z., Breen, M., Gross, D. N., Szutl, E. and Pilch, P. F. (2005) p115 interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation. Mol. Biol. Cell. 16, 2882-2890. https://doi.org/10.1091/mbc.E05-01-0072
  16. Chi N. W. and Lodish H. F. (2000) Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437-38444. https://doi.org/10.1074/jbc.M007635200
  17. Gill, S. C., and von Hippel, P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319-326. https://doi.org/10.1016/0003-2697(89)90602-7

Cited by

  1. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling vol.2017, 2017, https://doi.org/10.1155/2017/8356537
  2. The carboxy-terminal region of the TBC1D4 (AS160) RabGAP mediates protein homodimerization vol.103, 2017, https://doi.org/10.1016/j.ijbiomac.2017.05.119
  3. AKT and AMP-activated protein kinase regulate TBC1D1 through phosphorylation and its interaction with the cytosolic tail of insulin-regulated aminopeptidase IRAP vol.293, pp.46, 2018, https://doi.org/10.1074/jbc.RA118.005040