DOI QR코드

DOI QR Code

Soil Evaporation Evaluation Using Soil Moisture Measurements at a Hillslope on a Mountainous Forest

산림 사면에서 실측 토양수분을 이용한 토양증발평가

  • 곽용석 (부산대학교 대학원 환경공학과) ;
  • 김상현 (부산대학교 환경공학과)
  • Received : 2012.02.12
  • Accepted : 2012.03.08
  • Published : 2012.06.30

Abstract

In order to understand the hydrological processes on the mountainous forest, the configuration of soil evaporation (E) out of evapotranspiration (ET) is a challenging and important topic. In this study, we attempted to understand the soil evaporation process for a humid forest hillslope via measuring and analyzing soil moistures with a sampling interval in 2 hours at three locations for 10 days between May 22th and 31th 2009. Two methods were used to estimate soil evaporation in every 2hr; one is a method using soil moisture measurement ($E_{SM}$), the others methods are based on Penman equation (Penman (1948), Staple (1974), Konukcu (2007), Equilibrium Penman ($E_{equili}$)). As a critical parameter in determining $E_{SM}$, the dry surface layer (DSL), was estimated using energy balance equation. The accumulated soil evaporation ($E_{SM}$) of A, B, C points were estimated as 2.09, 1.08 and 2.88 mm, respectively. The estimated evaporation of Penman (1948), Staple (1974), Konukcu (2007), $E_{equili}$ were 4.91, 8.80, 8.63 and 3.28 mm. The proposed method with soil moisture measurement showed lower soil evaporations than the other conventional methods. The increasing soil temperature and interaction between soil and atmosphere due to existence of litter and DSL are considered as dominant factors for soil evaporation. The $E_{SM}$ has the apparent lag time between 2 and 4 hr compared with $E_{equili}$ and net radiation. The DSL and surface resistance ($r_s$) were increased as soil moisture was decreased for in this study. The estimated DSL through the temporal distribution analysis of soil moisture and tension measurements was also similar to that of the energy balance relationship.

산림사면에서 수문학적 과정을 이해하는데, 증발산 중 토양증발을 구분하여 규명하고 정량화하는 것은 도전적이지만 중요한 연구 주제이다. 본 연구에서는 2009년 5월 22일부터 31일까지 총 10일 동안에 습윤한 산림사면에서 세 지점에서 깊이별 토양수분을 집중 측정하고, 분석하여 토양증발과 관련 기작에 대해 연구하였다. 토양증발을 평가하는 방법은 토양수분자료의 물질수지($E_{SM}$), Penman식(1948) 그리고 수정된 Penman식(Staple (1974), Konukcu (2007), 평형증발($E_{equili}$))이다. $E_{SM}$을 계산하기 위해서는 지표면의 에너지 균형식을 이용하여 토양내의 증발깊이(DSL, dry surface layer)를 평가하였다. 그 결과, 각 지점(A, B, C)의 2시간별 10일 동안의 누적 증발량($E_{SM}$)은 약 2.09, 1.80 그리고 2.88mm으로 평가되었다. Penman식(1948), Staple (1974), Konukcu (2007), 평형증발($E_{equili}$)의 누적 증발값은 각각 4.91, 8.80, 8.63 그리고 3.28mm으로 $E_{SM}$보다 높은 값들을 보여주고 있다. 산림 내 토양증발은 직접적인 복사량과 바람의 영향보다는 낙엽층과 DSL으로 인해 토양 내의온도상승과 대기와의 상호작용을 통해서 일어난다. 이는 $E_{SM}$는 복사량의 변화보다 2~4시간 정도의 시간적 지체(time lag)가 보이기 때문이다. DSL과 지표저항($r_s$)은 토양수분이 감소함에 따라 선형적으로 증가하였다. 관측된 장력 및 토양수분의 수직적 분포를 분석함으로써 확보되는 DSL 값은 에너지 방정식에 의해서 추정된 값과 유사하게 나타났다.

Keywords

References

  1. 곽용석, 김수진, 김준, 임종환, 김상현 (2007). "광릉 산림소유역에서의 대공극흐름율과 유효대공극부피분율의 공간 분포." 한국농림기상학회지, 한국농림기상학회, 제9권, 제4호, pp. 234-246.
  2. 강민석, 권효정, 임종환, 김준(2009). "광릉활엽수림과침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산." 한국농림기상학회지, 한국농림기상학회, 제11권, 제4호, pp. 233-246.
  3. Aluwihare, S., and Watanabe, K. (2003). "Measurement of evaporation on bare soil and estimating surface resistance." Journal of Environmental Engineering, Vol. 129, No. 12, pp. 1157-1168. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:12(1157)
  4. Baker, J.M., and Lascano, R.J. (1989). "The spatial sensitivity of time domain reflectometry." Soil Science, Vol. 147, pp. 378-384. https://doi.org/10.1097/00010694-198905000-00009
  5. Baruah, T.C., and Hasegawa, S. (2001). "In-situ measurement of soil evaporation from a volcanic ash soil by TDR technique using soil water diffusivity." Geoderma, Vol. 102, pp. 317-328. https://doi.org/10.1016/S0016-7061(01)00039-8
  6. Camillo, P.J., and Gurney. R.J. (1986). "A resistance parameter for bare-soil evaporation models." Soil Science, Vol. 141, No. 2, pp. 95-105. https://doi.org/10.1097/00010694-198602000-00001
  7. Konukcu, F. (2007). "Modification of the Penman method for computing bare soil evaporation." Hydrological Processes, Vol. 21, pp. 3627-3634. https://doi.org/10.1002/hyp.6553
  8. Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Scociety of London, series A: Mathematical and Physical Sciences, Vol. 103, pp. 120-146.
  9. Philip, J.R., and de Vries, D.A. (1957). "Moisture movement in porous materials under temperature gradients." Transactions of the American Geophyiscal Union, Vol. 38, pp. 222-232. https://doi.org/10.1029/TR038i002p00222
  10. Rodriguez-Iturbe, I., and Porporato, A. (2004). Ecohyology of Water-Controlled Ecosystems. Cambridge University Press.
  11. Scott, H.D. (2000). Soil Physics: Agricultural and Environmental Applications, Iowa State University Press of America. pp. 108-139.
  12. Staple, W.J. (1974). "Modified Penman equation to provide the upper boundary condition in computing evaporation from soil." Soil Science Society ofAmerica Proceedings, Vol. 38, pp. 837-839. https://doi.org/10.2136/sssaj1974.03615995003800050038x
  13. Yamanaka, T., Takeda A., and Sugita, F. (1997). "A modified surface-resistance approach for representing bare-soil evaporation: Wind tunnel experiments under various atmospheric conditions." Water Resources Research, Vol. 33, No. 9, pp. 2117-2128. https://doi.org/10.1029/97WR01639
  14. Yamanaka, T., Takeda A., and Shimada, J. (1998). "Evaporation beneath the soil surface some observational evidence and numerical experiments." Hydrological Processes, Vol. 12, pp. 2193-2203. https://doi.org/10.1002/(SICI)1099-1085(19981030)12:13/14<2193::AID-HYP729>3.0.CO;2-P
  15. Yamanaka, T., and Yonetani, T. (1999). "Dynamics of the evaporation zone in dry sandy soils." Journal of Hydrology, Vol. 217, pp. 135-148. https://doi.org/10.1016/S0022-1694(99)00021-9
  16. Van de Griend, A.A., and Owe, M. (1994). "Bare soil surface resistance to evaporation by vapor diffusion under semiarid condition." Water Resources Research, Vol. 30, No. 2, pp. 181-188. https://doi.org/10.1029/93WR02747
  17. Van Genuchten, M.T. (1980). "A closed form equation for predicting the hydraulic conductivity of unsaturated soils." Soil Science Society of America Journal, Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Cited by

  1. Comparison of Soil Evaporation Using Equilibrium Evaporation, Eddy-Covariance and Surface Soil Moisture on the Forest Hillslope vol.22, pp.1, 2013, https://doi.org/10.5322/JES.2013.22.1.119
  2. Monitoring of soil water content and infiltration rate by rainfall in a water curtain cultivation area vol.52, pp.3, 2016, https://doi.org/10.14770/jgsk.2016.52.3.221