외부 자기장내의 반도체 CNT의 온도의존 조사

박정일

경북대학교 물리학과 나노물리 연구실, 대구시 북구 산격3동 1370번지, 702-701

이행기*

수성대학교 방사선과, 대구시 수성구 달구벌대로 528길 15, 706-711

(2012년 4월 4일 받음, 2012년 4월 28일 최종수정본 받음, 2012년 4월 30일 게재확정)

본 연구에서는 Argyres-Sige의 투영 연산자 방법을 단일 벽 탄소 나노튜브(SWNT)의 zigzag(10,0)에 직접 적용하여 이를 운동 방정식의 형태로 만들어 선모양 함수를 구하는 방법을 사용하였다. 선모양 함수의 실수 부분인 선 너비는 저온 영역(*T* < 200 K) 에서 온도의 영향에 거의 무관한 것으로 조사되었다. 이는 온도에 관여하는 페르미-디랙 분포함수가 선모양 함수에 거의 영향을 작용하지 않기 때문인 것으로 생각된다. 고온 영역(*T* > 200 K)에서는 선 너비가 다소 단조롭게 증가하는 것으로 나타났으며, 이 는 음향 포논의 영향에 기인하는 것으로 보인다. 그리고 SWNT의 전자스핀이완 시간은 1.4 × 10⁻⁶ s으로 계산되었다.

주제어 : 전자스핀공명, 투영연산자 방법, 탄소 나노튜브, 선 너비, 스핀이완시간

I.서 론

탄소 나노튜브(carbon nanotube: CNT)는 Iijima가 플러렌 을 합성할 때 다층 탄소 나노튜브(multi-walled carbon nanotube: MWNT)가 합성되는 것을 전자 현미경에 의해 처 음 발견되였다. 그 후로 미국의 IBM 연구소의 Bethune 연구 진이 Fe, Ni, Co 등과 같은 전이금속을 첨가하면서 단 일벽 탄소 나노튜브(single-walled carbon nanotube: SWNT)가 만 들어짐을 확인하였다[1]. CNT는 탄소로 구성되어 있는 속이 빈 튜브모양의 구조체로 직경이 수 나노미터가 되고, 원주방 향으로 움직이는 전자의 운동으로 제한을 받게 되면서 저 차 원 양자현상이 나타나게 된다. 이러한 현상은 튜브의 축에 대 해 감긴 형태인 손지기(chirality)에 따라 금속이나 반도체의 성질을 나타내기도 한다[2, 3]. CNT는 탄소가 지니는 역학적 견고성을 가지고 있을 뿐만 아니라 모든 원자가 표면에 노출 되어 있기 때문에 외부기체와도 쉽게 반응할 수 있다. 이때 CNT는 자체 전도도가 크게 변하여 이를 이용한 고감도 감지 기에도 널리 응용 되고 있다. 또한 CNT의 뾰쪽한 성질을 이 용한 디스플레이의 개발은 상당한 실용화에 접근해 있으며, 삼성 SDI에서는 대형 평판 디스플레이를 이미 시연한 적도 있다. 그러나 CNT와 금속 사이의 접합에 관한 문제가 아직 남아있고, 최근에는 수소 저장기구로서 6 wt% 이상의 높은 저장 능력이 보고되고 있으나 수분에 의한 영향 등이 문제로 남아있다. CNT에서는 탄소의 최 외각전자 4개 중에 3개가 선형결합을 이루어 이웃에 있는 3개의 탄소원자들과 강한 공

유결합을 형성하여 전체적으로 육각형 모양을 만들고, 여분의 전자는 면에 수직한 형태로 존재하게 된다. 여기서 공유결합 을 하는 전자들의 상태를 σ-궤도라고 하고, 면에 수직한 전 자의 상태를 π-궤도라 한다.

전자스핀공명(electron spin resonance: ESR)에 의한 분광 분석 방법은 CNT의 자기적 성질을 연구하는데 널리 이용되 어 왔다[4]. 또한 CNT의 일차원적 특성 때문에 시료의 양이 적음에도 불구하고 전자구조와 관련된 공명현상에 의해 강한 신호를 검출할 수 있다[5]. 일 차원 CNT에 대한 ESR 스펙 트럼의 선모양(line-profile)함수와 선 너비(line-width)는 p_z 전 자의 스핀-궤도 상호작용(spin-orbit interaction: SOI)에 의해 확장(broadening)이 발생하며, 선 너비는 스핀 이완 시간(spin relaxation time)의 역수의 의미를 가진다[6].

선모양 함수의 계산과정에서 사용되는 방법들 중 선형응답 이론을 제2양자화 표현으로 정리하여 전개한 Kubo[7]의 이론 과, 운동방정식에서 상관함수(correlation function)를 바로 계 산하는 Mori[8]이론 등이 있다. 이때 Mori 이론에 기초한 투 영 연산자기법(projection operator method: POM)을 공명이 론에 직접 적용한 Argyres-Sigel(AS)[9]의 이론과 Kawabata [10]의 방법이 있다. 각각의 POM 정의에 따라 상호작용에 대한 전개과정이 조금씩 달라지나 약한 상호작용일 때는 낮 은 차수 만을 고려한 계산결과가 대체로 일치함을 보인다.

본 연구에서는 SWNT내의 약한 SOI을 표현하는 해밀토니언 (Hamiltonian)을 AS의 POM 방법에 적용하여 온도의존성의 선 너비를 구하였다. 이 방법은 다른 이론과 달리 고차 항을 포함하는 선모양 함수를 비교적 간단히 계산할 수 있다. 그리 고 공명흡수 정점에서 선모양 함수가 발산되는 문제를 해결하

^{*}Tel: (053) 749-7104, E-mail: leeki@dpu.ac.kr

기 위하여 이를 연속분수표현(continued fraction representation) 으로 전개하는 연구가 많이 이루어졌지만, 이는 일반적인 실 제 계의 적용에 까다로운 연산과정을 포함하고 있다. 따라서 이와 같은 어려운 과정을 피하고 실제 계의 적용에 유리한 급수전개표현(series expansion representation)으로 하였으며, 유효한 2차 항까지 계산하여 실험결과와 비교하였다.

II. CNT의 구조

1. CNT의 원자구조

SWNT는 육각형 흑연의 반복으로 이루어지며, 이런 반복은 두 개의 단위벡터 ā와 b에 의해 표현 된다. 여기서 병진 벡터는 $\vec{C}_h = l_1\vec{a} + l_2\vec{b}$ 이고, l과 L은 정수이다. 이 벡터에 의해 정의된 점을 연결하여 감으면 CNT가 되는데 이 때 CNT의 직경 및 손지기는 (l1, l2)에 의해 표시된다. 그리고 (1, 0)의 점을 잡아 말면 zigzag가 되고, (1, 1)과 (1, b)을 각각 말면 armchair와 chiral이 된다. 단위벡터를 직교좌표로 다시 나타내면 $\vec{a} = L_c(1, 0), \vec{b} = L_c(1/2, \sqrt{3}/2)$ 이고, L_c 는 탄소원자간 결합 길이이다. 그리고 병진 벡터의 크기와 원주 방향과 가장 가까운 축과의 각 및 직경은 각각 $\overrightarrow{C}_{h} = \sqrt{3}L_{r}$ $(l_1 + l_2 + l_1 l_2)^{1/2}, \theta = \tan^{-1}[\sqrt{3}l_2/(2l_1 + l_2)], d = |\vec{C}_h|/\pi$ 이며, 모든 식이 1과 1, 정수만으로 CNT의 구조표현이 가능하다. 흑연 판 내에서 병진 벡터에 직교하면서 첫 번째 교차하는 격자 점을 연결하는 또 다른 병진 벡터를 정의하면 $\overrightarrow{T} = [(l_1 + r_2)]$ $2l_2)\vec{a} - (2l_1 + l_2)\vec{b}]/d_R$ 이고, $d_R \in l_1$ 과 L의 최대 공약수가 D 라고 했을 때, $l_1 - l_2$ 가 3D의 배수이면 $d_R = 3D$ 이고, 그렇지 않으면 d_R=D이다. 그러면 CNT의 원시세포내의 면적은

$$\left| \vec{C}_h \times \vec{T} \right| = \frac{3\sqrt{3}}{d_R} L_c^2 (l_1^2 + l_1 l_2 + l_2^2), \tag{1}$$

이고, 원시세포의 역 살창의 크기 $k = 2\pi/(\sqrt{3}L_c)$ 와 육각형의

Fig. 1. The lattice structure of graphene.

면적은 $(3\sqrt{3}/2)L_c^2$ 이므로 단위 CNT 내에 들어있는 육각형 의 개수 N_h 와 이 원시세포 내에 들어있는 탄소원자의 개수 N_c 는

$$N_h = \frac{2}{d_R}(l_1^2 + l_1 l_2 + l_2^2), \ N_c = \frac{4}{d_R}(l_1^2 + l_1 l_2 + l_2^2),$$
(2)

이다[Fig. 1].

2. 시스템

CNT는 튜브의 축 방향으로 일차원적 주기성을 가지는 구 조이다. 특히 직경과 각 6에 따른 전기 전도도가 도핑이나 결함에 무관하게 금속 또는 반도체의 성질을 나타낸다. 먼저 CNT내의 전자의 운동은 원주 방향으로 제한되면서 주기적인 경계조건이 실제 공간에서 정의된 단위세포에 적용하게 된다. 따라서 흑연 판 내에서는 페르미 준위 근처에 디락형 분산 (Dirac-like dispersion)으로 나타나는 서로 다른 두 개의 에너 지 띠를 가지게 되며[11], 이는 다음과 같이 제일 브릴루앙 영역의 모서리에

$$\begin{split} K &= \frac{2\pi}{3L}(1,\sqrt{3}), \ \lambda = + 1 \ \text{일때}, \\ K' &= \frac{2\pi}{3L}(-1,\sqrt{3}), \ \lambda = -1 \ \text{일때}, \end{split}$$
(3)

위치하게 된다[Fig. 2]. 이와 같은 에너지 띠 구조를 CNT에 적용하고, 외부 정 자기장 B를 가한 계의 해밀토니언은[12]

$$H_{\lambda} = \hbar v_F (\lambda \kappa_m \sigma_1 + k \sigma_2) + \hbar \omega_z (\sin \alpha S_{\xi} + \cos \alpha S_{\zeta}), \tag{4}$$

이다. 여기서 $\hbar\omega_z = g\mu_B B$ 이고, μ_B 는 보어 마그네톤, α 는 주 축방향 (과 정 자기장과의 사이의 각, ν_F 는 페르미 속도 이 며, 그리고 σ_1 과 σ_2 는 파울리의 스핀 행렬 이다. 점 $K(\lambda = +1)$ 와 $K'(\lambda = -1)$ 에 관계 있는 전자의 파수 벡터 \vec{k} 는 CNT 의 주축을 향하고 이와 수직한 방향 ρ 로 흑연 판을 둘둘 말

Fig. 2. Unit cell and Brillouine zone for zigzag fiber.

며, 원주 방향으로 전자가 가지는 운동량인 파수는 $\kappa_m = 2(m - \lambda v/3)d$ 이고, m과 v는 모두 양자 수이다. CNT에 가한 외부 정자기장에 의해서 CNT 단면을 통과하는 아로노프-봄 (Aharonov-Bohm) 자속 $\phi_{AB} = B_0 \cos \pi d^2/4$ 이 다음의 양자화 조건

$$\kappa_{m,\lambda} = \frac{2}{d} \left(m - \frac{1}{3} \lambda \nu + \frac{\phi_{AB}}{\phi_0} \right), \tag{5}$$

을 만족하게 된다. 여기서 φ₀=2πħc/lel는 선 다발 양자화 (flux quantization)이며, lel는 전자의 전하 량 이다. 그리고 k, m, λ)가 전자에 대한 H_λ의 고유함수이면 다음의 방정식

$$H_{\lambda}|k,m,\lambda\rangle = \left(\pm\hbar v_{F_{\lambda}}\sqrt{\kappa_{m,\lambda}^{2}+k^{2}}+\hbar\omega_{\lambda}\right)|k,m,\lambda\rangle,\tag{6}$$

을 만족하고, 여기서 $ε_{k,m,\lambda} = \pm \hbar v_F \sqrt{\kappa_{m,\lambda}^2 + k^2} + \hbar \omega_\lambda$ 는 고유 에너지이며, +(-)는 에너지 띠의 전도(가전자)대를 의미한다. $v = \pm 1$ 은 반도체에서의 스펙트럼을 의미하며, 자기장을 가하 지 않았을 때 CNT의 에너지 간격은 $E_g = 4\hbar v_F/3d$ 이 된다. CNT에 대한 ESR 스펙트럼의 선 너비는 전자의 SOI에 의해 발생하며, CNT 좌표축 ξ, η, ζ에 대한 SOI 해밀토니언은

$$H_{so} = \Lambda_0 \lambda \sigma_0 2S_{\zeta} + \Lambda_1 \lambda \sigma_1 2S_{\zeta} - i\Lambda_2 \sigma_2 (S_+ e^{i\phi} - S_- e^{-i\phi}), \qquad (7)$$

이며, SOI 상수 Λ 는 CNT의 곡률에 비례하고, $S_{\pm} = S_{\xi} \pm iS_{\eta}$, $\varphi = 2\rho/d$, $0 < \rho < |\vec{C}_h|$, $\Lambda_0 = (\delta_0/d)\cos 3\pi$, $L_{1,2} = \delta_{1,2}/d$ 이다. CNT의 나선성에 의존하는 Λ_0 는 $\operatorname{zigzag}(\theta = 0)$ 에서 최대이고, $\operatorname{armchair}(\theta = \pi/6)$ 에서 최소가 되며, 여기서 ω_{λ} 는

$$\omega_{\lambda} = \sqrt{(\omega_z \sin\alpha)^2 + [\omega_z \cos\alpha + 2\lambda(\Lambda_0 + \Lambda_1 \langle \sigma_1 \rangle)/\hbar]^2}, \qquad (8)$$

이다.

III. AS 투영연산자의 적용

1. 전자스핀 감수성

일반적으로 다 전자계의 이론에서 ESR의 흡수율과 선모양 함수는 전자스핀감수성(dynamical electron spin susceptibility: DESS)의 허수 부[13-15]는

$$\chi_{+-}^{"}(\omega) = \frac{g_e^2 \mu_B^2}{4V\hbar} \operatorname{Re} \int_0^{\infty} \exp(-i\omega t) \langle [\sigma_-, \sigma_+(t)] \rangle_{EN} dt, \qquad (9)$$

로 표현된다. 여기서 V는 계의 부피, ω는 입사되는 전자기파 의 각 진동수, g_e는 자유전자의 분광학적 지 인자(g-factor), σ는 전자의 파울리 스핀 연산자이며, σ(t)는 σ의 하이젠베르 크 표현이다. 그리고 <····›_{EN}는 계의 앙상블 평균을 의미한다. CNT를 표현하는 해밀토니언에 대응되는 리우빌(Liouville) 연산자는 $L = L_{\lambda} + L_{so}$ 이고, 다음의 관계식 $L_{\lambda}O \equiv [H_{\lambda}, O]$, $L_{so}O \equiv [H_{so}, O]$ 을 만족한다. 그리고 H_{λ} 의 한 고유상태에 대해 서 생성연산자(creation operator) $a_{k,m}^{+}$ 와 소멸연산자(annihilation operator) $a_{k,m}$ 를 도입하여 식(9)를 제2양자화 형태로 나타내 고 평균을 취하면

$$\langle [\sigma_{,},\sigma_{+}(t)] \rangle = \sum_{k,m,\lambda} \langle k,+m,\lambda | \sigma_{k},-m,\lambda \rangle \langle k,-m,\lambda | \sigma_{+}(t) | k,+m,\lambda \rangle$$
$$\times [f(\varepsilon_{k,m,\lambda}) - f(\varepsilon_{k,-m,\lambda})],$$
(10)

이고, $f(\varepsilon_{k,m,\lambda}) = [1 + e^{\beta(\varepsilon_{k,m,\lambda}-\mu)}]^{-1}$ 는 페르미-디랙 분포함수이 다. 여기서 연산자들 사이에는 다음의 관계식

$$S_{+} = \hbar a_{+k,+m}^{+} a_{-k,-m}, S_{-} = \hbar a_{-k,-m}^{-} a_{+k,+m},$$

$$2S_{z} = \hbar (a_{+k,+m}^{+} a_{+k,+m} - a_{-k,-m}^{+} a_{-k,-m}) = \hbar (N_{+k,+m} - N_{-k,-m}),$$

$$S_{+}S_{-} + S_{-}S_{+} = \hbar^{2} (a_{+k,+m}^{+} a_{-k,-m} a_{-k,-m}^{+} a_{+k,+m} a_{+k,+m} a_{+k,+m} a_{+k,+m} a_{-k,-m})$$

$$= \hbar^{2} (a_{+k,+m}^{+} a_{+k,+m}^{+} a_{+k,+m} a_{+k,+m} a_{+k,+m}),$$

$$(11)$$

을 사용하여 $\chi_{+-}^{"}(\omega)$ 를 다시 표현하고 $\Theta_{+-}(\omega)$ 를 다음과 같이 정의하면

$$\chi_{+-}^{"}(\omega) = \frac{g^2 \mu_B^2}{4h} \operatorname{Re} \sum_{k,m,\lambda} [f(\varepsilon_{k,+m,\lambda}) - f(-\varepsilon_{k,-m,\lambda})] \langle k,+m,\lambda | \sigma_{-} | k,-m,\lambda \rangle \times \int_{0}^{\infty} dt \exp(-i\omega t) \langle k,+m,\lambda | \sigma_{+}(t) | k,-m,\lambda \rangle,$$
(12)

$$\Theta_{+-}(\omega) \equiv \int_{0}^{\infty} dt \ e^{-i\omega t} \langle k, +m, \lambda | \sigma_{+}(t) | k, -m, \lambda \rangle,$$
(13)

이다. Θ₊(ω)를 계산하면 CNT의 선모양 함수와 DESS를 모 두 얻을 수 있다.

2. 선모양 함수와 지 인자

본 연구에서는 선모양 함수를 구하기 위하여 AS의 POM 을 이용한다. 투영연산자 P+를 임의의 연산자 O에 작용하면

$$P_{+-}O = \frac{O_{+m-m}}{(\sigma_{+})_{+m-m}} \sigma_{+},$$
(14)

로 정의되고, $O_{+m-m} = \langle k, +m, \lambda | O | k, -m, \lambda \rangle$ 이다. P_+ 에 수직 한 연산자(Abelian inverse)를 $Q_{+-} = 1 - P_+$ 로 정의하면, $P_{+-}\sigma_{+} = \sigma_{+}, Q_{+-}\sigma_{+} = 0, P_{+-}^2 = P_{+-}, P_{+-}Q_{+-} = 0$ 을 만족하고, 시간에 의 존하는 연산자 $\sigma_+(t)$ 를 리우빌 연산자로 표현하면 $\sigma_+(t) =$ exp(*iLt*) σ_+ 이다. 그러면 식(13) 은

$$\Theta_{+-}(\omega) \equiv \langle k, +m, \lambda | \int_{0}^{\infty} \exp\{-i(\omega - L)t\} \sigma_{+} | k, -m, \lambda \rangle$$

= $-i \langle k, +m, \lambda | R(\omega) | k, -m, \lambda \rangle,$ (15)

로 되고, 여기서 $R(\omega) = G(\omega)\sigma_+, G_P(\omega) = (\omega - L)^{-1}$ 이다. 그리 고 전파인자는

$$G_{\underline{Q}}(\omega) = (\omega - \underline{Q}_{+-}L)^{-1} = G_{\lambda} + G_{\lambda}\underline{Q}_{+-}L_{so}G_{\lambda} + G_{\lambda}\underline{Q}_{+-}L_{so}G_{\lambda}\underline{Q}_{+-}L_{so}G_{\lambda} + \cdots,$$
(16)

으로 전개할 수 있으며, $L_{so}\sigma_{+}=\omega\sigma_{+}$, $Q_{+}L_{\lambda}\sigma_{+}=0$, $(L_{\lambda}Q_{+}-Q_{+})_{+m-m}=0$ 를 이용하여 $R(\omega)$ 를 다시 표현하면

$$\omega - \frac{R_{+m-m}}{(\sigma_{+})_{+m-m}} - \frac{\left[L\{1 + G_{Q}(\omega)Q_{+-}L\}\frac{R_{+m-m}}{(\sigma_{+})_{+m-m}}\sigma_{+}\right]}{(\sigma_{+})_{+m-m}} = 1. \quad (17)$$

이다. 이때 선모양 함수 $\gamma_{+-}^{CNT}(\omega)$ 는

$$i\gamma_{+-}^{CNT}(\omega) = \frac{1}{(\sigma_{+})_{+m-m}} \left[\left\{ \sum_{n} (L_{so}G_{\lambda}(\omega)Q_{+-})^{n}L \right\} \sigma_{+} \right]_{+m-m}$$
$$= i\gamma_{+-(1st)}^{CNT}(\omega) + i\gamma_{+-(2nd)}^{CNT}(\omega) + i\gamma_{+-(3rd)}^{CNT}(\omega) + \cdots , \quad (18)$$

의 형태인 연산자의 무한 합으로 표현되며, 여기서 지 인자는

$$g = g_e + \frac{1}{\hbar} \{ [\langle k, +m, \lambda | H_{so} | k, +m, \lambda \rangle - \langle k, -m, \lambda | H_{so} | k, -m, \lambda \rangle] [1 + f(\varepsilon_{k,m,\lambda})] + [\langle k, +m, \lambda | H_{so} | k, -m, \lambda \rangle - \langle k, -m, \lambda | H_{so} | k, +m, \lambda \rangle] f(\varepsilon_{k,m,\lambda}) \},$$
(19)

이다. 그리고 다음의 유용한 연산자 관계식

$$\sum_{\alpha} (Q_{+-}O)_{\alpha-m} = \sum_{\alpha \neq +m} (O)_{\alpha-m},$$

$$\sum_{\alpha} (Q_{+-}O)_{+m\alpha} = \sum_{\alpha \neq -m} (O)_{+m\alpha},$$

$$(L_f \sigma_+)_{+m-m} = \hbar \omega_z(\sigma_+)_{+m-m},$$
(20)

을 이용하고,
$$(G_f O)_{lphaeta} = (\overline{G}_f)_{lphaeta}(O)_{lphaeta}$$
이므로

$$(\overline{G}_{f})_{+m-m} = \frac{\hbar}{\pm \varepsilon_{k,m,\lambda} + \hbar(\omega - \omega_{z})},$$

$$(\overline{G}_{f})_{-m+m} = \frac{\hbar}{\mp \varepsilon_{k,-m,\lambda} + \hbar(\omega + \omega_{z})},$$
(21)

가 된다. 그러면 계의 선모양 함수는

$$i\gamma_{+-(1st)}^{CNT}(\omega) = \frac{1}{\hbar^2} \sum_{\alpha \neq +mk,\lambda} \sum_{k,\alpha,\lambda} \frac{\hbar \varepsilon_{k,\alpha,\lambda} \varepsilon_{-k,\alpha,\lambda}}{\varepsilon_{k,\alpha,\lambda} - \hbar \omega_z} f(\varepsilon_{k,\alpha,\lambda})$$

$$+\frac{1}{\hbar^{2}}\sum_{\alpha\neq-mk,\lambda}\sum_{\epsilon_{-k,\alpha,\lambda}+\hbar\omega_{z}}\frac{m\epsilon_{k,\alpha,\lambda}\epsilon_{-k,\alpha,\lambda}}{\epsilon_{-k,\alpha,\lambda}+\hbar\omega_{z}}f(\epsilon_{-k,\alpha,\lambda}),$$

$$i\gamma_{+-(2nd)}^{CNT}(\omega) = \frac{1}{\hbar^{2}}\sum_{k,\lambda}\frac{2\hbar(\epsilon_{k,\alpha,\lambda}+\hbar\omega)\epsilon_{k,m,\lambda}^{2}}{(\epsilon_{k,\alpha,\lambda})^{2}-\hbar^{2}(\omega-\omega_{z})]}$$

$$f(\epsilon_{k,\alpha,\lambda})[1-f(\epsilon_{-k,\alpha,\lambda})], \qquad (22)$$

이다. 식(22)는 페르미-디랙 분포함수를 포함하고 있으며, 이 는 전자스핀이 +m(-m)에서 -m(+m)으로 전이하는 과정을 표 현하고 있다. 선모양 함수의 수치계산을 하기 위해서 다음의 관계식

$$\langle k, m, \lambda | \sigma_0 | k, m, \lambda \rangle = 1, \quad \langle k, m, \lambda | \sigma_2 e^{\pm i\varphi} | k, m, \lambda \rangle = 0,$$

$$\langle k, m, \lambda | \sigma_1 | k, m, \lambda \rangle = \pm \frac{\lambda \kappa_{m,\lambda}}{\sqrt{k^2 + \kappa_m^2}},$$
(23)

과 이론적으로 계산된 $v_F = 3 \times 10^5$ m/s, $a_{cc} = 0.144$ nm, $\delta_1 = -0.19$ meV · nm, $\delta_0/\delta_1 = 4.5$, $\delta_2/\delta_1 = -1.5$, $\alpha = \pi/2$ 값을 사용 한다. 그리고 zigzag (9,0)과 (10,0)에 대한 직경은 각각 0.715 nm과 0.794 nm이다.

CNT의 전자구조는 Saito연구진[16]의 꽉 묶음(tightbinding)방법에 의해서 계산되었으며, 3의 배수인 (9,0)에서는 에너지 간격이 0이 된다. 그러나 CNT의 곡률에 의한 변형을 고려하면 약간의 유한한 에너지 간격을 가지게 된다. (10,0) 의 경우는 페르미 준위 근방에서 상태밀도(density of state) 가 0 이므로 에너지 간격이 존재하는 반도체가 된다. Fig. 3 에서는 입사된 전자기파의 진동수 9.5 GHz에 대한 반도체 zigzag (10,0)의 지 인자를 온도 의존성으로 나타내었다. 온도 가 증가 할수록 지 인자는 선형적으로 증가하는 것으로 조사 되었다. 실제로 공명선을 기록계에 그릴 때 공명 흡수선을 직 접 그리는 것 보다 일반적으로 그 일차 미분을 그리게 되며, 선모양에 대한 선 너비는 최대치간(peak-to-peak) 거리로 측

Fig. 3. (Color online) The temperature dependence of the g-factor.

– 76 –

Fig. 4. (Color online) The temperature dependence of the line-widths in the presence of an external electromagnetic radiation at a frequency of 9.5 GHz.

정한다. 이러한 선 너비는 스핀 이완 시간의 역수에 비례하 는 것으로, CNT의 미시적 구조의 정보는 이 항속에 포함되 어 있다고 지금까지 논의 되어왔다. Fig. 4에서는 선 너비를 온도의 의존성으로 나타내었다. *T* < 200 K에서는 온도의 변화 에 거의 독립적이며, *T* > 200 K에서는 다소 증가하는 것으로 조사되었다. 여기서 온도가 증가함에 따라서 선 너비가 증가 하는 것은 음향 포논(acoustic phonon)과의 상호작용에 기인 하는 것으로 보이며, Salvetat et al.[17]의 실험 결과와 비교 하였다. 다만 실험에서는 온도 200 K 이상의 결과는 보이지 않으며, 본 연구의 이론적 해석으로 유추할 수 있었다. 그리 고 전자 스핀 이완 시간은 *hv* = *g*μ_BΔ*B*에서 Δ*B*를 Fig. 4에 서와 같이 약 25 G라고 할 때 1.4 × 10⁻⁶ s을 가지게 된다.

IV. 결 론

본 연구에서는 AS의 투영 연산자 방법을 SWNT의 반도체 zigzag (10,0)에 직접 적용하여 이를 응답함수이론의 형태로 만들어 선모양 함수를 계산하였다. 일 차원 CNT에 대한 ESR 스펙트럼의 선 너비는 전자의 SOI에 의해서 확장이 발 생하며, 이는 스핀 이완 시간의 역수에 비례한다. 반도체 zigzag (10,0)에서 선 너비는 저온 영역(*T* < 200 K)에서 온도 의 변화에 거의 무관한데, 이는 온도에 관여하는 페르미-디랙 분포함수가 선모양 함수에 거의 영향을 작용하지 않기 때문 인 것으로 보인다. 또한 고온 영역(T > 200 K)에서는 온도가 증가함에 따라 선 너비가 다소 증가하며, 이것은 음향 포논 과의 상호작용으로 생각된다. 그리고 계의 스핀 이완 시간은 1.4 × 10⁻⁶ s로 계산 되었다. 그리고 본 연구의 이론적인 접근 으로 CNT의 전자기적 구조를 좀 더 이해하여 CNT를 이용 한 평판 디스플레이의 연구에도 도움이 될 것으로 기대한다.

감사의 글

이 논문은 경북대학교의 연구비 지원으로 수행되었으며 이 에 감사 드린다.

참고문헌

- A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001).
- [2] O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, and Walt A. de Heer, Phys. Rev. B 52, R6963 (1995).
- [3] L. Forro et al., in Science and Application of Nanotubes, edited by Tomanek and Enbody, Kluwer Academic/Plenum Publishers. New York (2000).
- [4] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon, Oxford (1970).
- [5] M. S. Dresselhause, G. Dresselhause, and P. C. Eklund, Science of Fullerences and Carbon Nanotubes, Chapter 19, Academic Press, Waltham (1996).
- [6] A. Fert, IEEE Trans. Electron Dev. 54, 921 (2007).
- [7] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
- [8] H. Mori, Progr. Theor. Phys. 34, 399 (1965).
- [9] A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970).
- [10] P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973).
- [11] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
- [12] H. O. H. Churchill, Phys. Rev. Lett. 102, 166802 (2009).
- [13] J. I. Park, H. R. Lee, and S. H. Lee, Jpn. J. Appl. Phys. 51, 52402 (2012).
- [14] J. I. Park, H. R. Lee, and K. C. Bae, J. Kor. Phys. Soc. 58, 1644 (2011).
- [15] J. I. Park, H. K. Lee, and H. R. Lee, J. Magnetics 16, 108 (2011).
- [16] R. Saito, M. Fujita, G. Dresselhause, and M. S. Dresselhause, J. Appl. Phys. 73, 494 (1993).
- [17] J. P. Salvetat, T. Feher, and L. Forro, Phys. Rev. B 72, 75440 (2005).

Investigation of Temperature Dependence for CNT Semiconductor in External Magnetic Field

Jung-Il Park

Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University, Daegu 702-701, Korea

Haeng-Ki Lee*

Department of Radiotechnology, Suseong College, Daegu 706-711, Korea

(Received 4 April 2012, Received in final form 28 April 2012, Accepted 30 April 2012)

We calculated the electron spin resonance (ESR) line-profile function. The line-width of single-walled carbon nanotube (SWNT) was studied as a function of the temperature at a frequency of 9.5 GHz in the presence of external electromagnetic radiation. The temperature dependence of the line-widths is obtained with the projection operator method (POM) proposed by Argyres and Sigel. The scattering is little affected in the low-temperature region (T < 200 K). We conclude that the calculation process presented in this method is useful for optical transitions in SWNT.

Keywords : electron spin resonance (ESR), projection operator method (POM), carbon nanotube, zigzag, line-width, electron spin relaxation