DOI QR코드

DOI QR Code

자성소재 연구를 위한 중성자산란 입문

Introduction to Neutron Scattering for Magnetic Materials Research

  • 정재홍 (서울대 물리천문학부, 복합다체계물성연구센터(CSCMR)) ;
  • 이상현 (서울대 물리천문학부, 복합다체계물성연구센터(CSCMR)) ;
  • 박제근 (서울대 물리천문학부, 복합다체계물성연구센터(CSCMR))
  • Jeong, Jae-Hong (CSCMR, Department of Physics & Astronomy, Seoul National University) ;
  • Lee, Sang-Hyun (CSCMR, Department of Physics & Astronomy, Seoul National University) ;
  • Park, Je-Geun (CSCMR, Department of Physics & Astronomy, Seoul National University)
  • 투고 : 2012.06.04
  • 심사 : 2012.06.19
  • 발행 : 2012.06.30

초록

${\AA}$의 파장과 수 meV에서 수백 meV의 에너지를 가지는 중성자는 물질의 구조와 동역학을 연구하는데 적절한 특징을 가지고 있다. 이런 중성자 산란은 지난 60여년 동안 발전되어 이제는 응집물질물리학을 비롯한 다양한 재료과학 분야에서 대표적이고 핵심적인 실험방법으로 자리잡았다. 본고에서는 이런 중성자 산란을 이용한 구조 및 동역학 연구의 기본 원리를 설명하고 간단한 예를 제시한다.

Having a de Broglie wavelength of a few ${\AA}$ with its corresponding energies in the range of a few to a few hundreds meV, neutrons are ideally suited for the studies of structure and dynamics in condensed matter research. Neutron scattering has been developed over the past 60 years or so and become a very mature and established experimental technique in the very broad range of material sciences. In this short introductory article, we have explained its working principles and provided few selected examples of application.

키워드

참고문헌

  1. 물리학과첨단기술 18, 5월호 (2009).
  2. T. Mason, Physics Today 59, 44 (2006).
  3. T. Kamiyama, private communications (2003).
  4. J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, and Ivan K. Schuller, Phys. Rev. B 36, 3608 (1987). https://doi.org/10.1103/PhysRevB.36.3608
  5. J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. Crabtree, A. Umezawa, L. J. Nowicki, and A. P. Paulikas, Phys. Rev. B 36, 5731 (1987). https://doi.org/10.1103/PhysRevB.36.5731
  6. J. Park, S. Lee, M. Kang, K.-H. Jang, C. Lee, S. V. Streltsov, V. V. Mazurenko, M. V. Valentyuk, J. E. Medvedeva, T. Kamiyama, and J.-G. Park, Phys. Rev. B 82, 054428 (2010). https://doi.org/10.1103/PhysRevB.82.054428
  7. S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-W. Chenog, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, Nature 451, 805 (2008). https://doi.org/10.1038/nature06507
  8. F. Boue, R. Cywinski, A. Furrer, H. Glattli, S. Kilcoyne, R. L. McGreevy, D. McMorrow, D. Myles, H. Ott, M. Rubhausen, and G. Weill, Neutron Scattering and Complementary Experimental Techniques. The ESS Project, Volume II, Chapter 5. ESS Council, Druckerei Plump (2002).
  9. B. Brockhouse and A. T. Stewart, Phys. Rev. 100, 756 (1955). https://doi.org/10.1103/PhysRev.100.756
  10. R. M. Kicklow, G. Gilat, H. G. Smith, L. J. Raubenheimer, and M. K. Wilkinson, Phys. Rev. 164, 922 (1967). https://doi.org/10.1103/PhysRev.164.922
  11. T. J. Sato, S.-H. Lee, T. Katsufuji, M. Masaki, S. Park, J. R. D. Copley, and H. Takagi, Phys. Rev. 68, 014432 (2003). https://doi.org/10.1103/PhysRevB.68.014432
  12. J. Jeong, E. A. Goremychkin, T. Guidi, K. Nakajima, G. S. Jeon, S.-A. Kim, S. Furukawa, Y. B. Kim, S. Lee, V. Kiryukhin, S.-W. Cheong, and J.-G. Park, Phys. Rev. Lett. 108, 077202 (2012). https://doi.org/10.1103/PhysRevLett.108.077202