DOI QR코드

DOI QR Code

Immunological Activity of Bovine Colostral Whey Protein Containing TGF-β from Imsil Province

임실지역 젖소 초유로부터 분리한 TGF-β 함유 유청 단백질의 면역활성

  • Received : 2012.01.19
  • Accepted : 2012.05.23
  • Published : 2012.06.30

Abstract

This experiment was carried out in order to separate bovine colostral whey protein from Imsil province and to test the effect of immunological activity on RAW 264.7 cells. The colostral whey protein contained TGF-${\beta}$ 7, 475 pg/g in total. We first tested the effect of the colostral whey protein on the proliferation of RAW 264.7 cells and it demonstrated cytotoxicity at concentrations greater than 20 mg/mL. Therefore, the immunological activities of colostral whey protein were investigated in maximum concentration of 10 mg/mL on LPS-induced RAW 264.7 cells. Results indicated that colostral whey protein inhibited the LPS-induced nitric oxide (NO) production in a dose-dependent manner. The colostral whey protein also suppressed the productions of proinflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in a dose-dependent manner. In addition to the immunological activity, colostral whey protein led to the expression of heme oxygenase-1 (HO-1) in RAW 264.7 cells. In conclusion, colostral whey protein containing TGF-${\beta}$ inhibited the production of NO, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 via expression of HO-1.

분만 후 3일 이내에 분비되는 임실 지역의 젖소 초유에서 유청 단백질을 효율적으로 분리하고 RAW 264.7 세포의 증식 및 면역활성에 미치는 영향을 조사하였다. 실험에 사용한 초유의 유청 단백질 g당 TGF-${\beta}1$은 875 pg/mL,TGF-${\beta}2$는 6,600 pg/mL이었으며 실험에 사용한 초유 유청 단백질 내 총 TGF-${\beta}$의 양은 7,475 pg/mL이었다. RAW264.7 세포에 대한 초유 유청 단백질 첨가에 따른 세포증식 정도를 알아본 결과 10 mg/mL의 농도까지는 세포성장을 유도하였으나 20 mg/mL 이상의 농도에서는 세포성장을 억제하였다. 이에 RAW 264.7 세포에서의 초유 유청 단백질의 면역관련 실험에 사용할 농도는 최대 10 mg/mL까지로 결정하였다. RAW 264.7 세포에 초유 유청 단백질(0-10 mg/mL)과 LPS(1 ${\mu}g/mL$)를 차례로 반응시키고 NO생성량을 측정한 결과 초유 유청 단백질이 농도 의존적으로 NO의 생성을 억제하였다. 또한 LPS 자극에 의한 염증성 사이토카인(TNF-${\alpha}$, IL-$1{\beta}$, IL-6)이 생성되는 과정에서 초유 유청 단백질의 효과를 확인하였다. 그 결과, LPS를 단독으로 첨가했을 때 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 농도가 모두 증가하였으나 초유 유청 단백질을 첨가한 경우에는 염증성 사이토카인의 생성이 농도 의존적으로 감소하는 경향을 보였다. 초유 유청 단백질에 의해 NO를 비롯한 염증성 사이토카인의 생성이 억제되는 것이 heme oxygenase-1의 발현과 관련하는지 알아보고자 초유 유청 단백질을 농도별(0-10 mg/mL)로 처리하여 heme oxygenase-1의 발현여부를 측정한 결과 대조군과 비교하여 3-4배 이상의 발현 증가를 보였다. 이상의 결과들로 미루어보아 LPS로 자극된 RAW 264.7 세포에서 TGF-${\beta}$ 등을 함유한 초유 유청 단백질은 10 mg/mL 이하의 농도에서 농도 의존적으로heme oxygenase-1의 발현을 유도하여 염증성 사이토카인인 TNF-${\alpha}$, IL-$1{\beta}$, IL-6 및 NO의 생성을 억제하는 것으로 판단되었다.

Keywords

References

  1. Ahn, J. H. and Park J. K. (2010) Effect of supplementation of fermented colostrum on growth and occurrence of diarrhea in holstein calves. J. Ani. Sci. Technol. 52, 281-286. https://doi.org/10.5187/JAST.2010.52.4.281
  2. An, M. J., Cheon, J. H., Kim, S. W., Park, J. J., Moon, C. M., Han, S. Y., Kim, E. S., Kim, T. I., and Kim, W. M. (2009) Bovine colostrums inhibits nuclear factor kB-mediated proinflammatory cytokine expression in intestinal epithelial cells. Nutr. Res. 29, 275-280. https://doi.org/10.1016/j.nutres.2009.03.011
  3. Choi, H. S., Jung, K. H., Lee, S. C., Yim, S. V., Chung, J. H., Kim, Y. W., Jeon, W. K., Hong H. P., Ko, Y. G., Kim, C. H., Jang, K. H., and Kang, S. A. (2009) Bovine colostrum prevents bacterial translocation in an intestinal ischemia/reperfusion- injured rat model. J. Med. Food. 12, 37-46. https://doi.org/10.1089/jmf.2007.0613
  4. Elfstrand, L., Lindmak-Mnsson, H., Paulsson, M., Nyberg, L., and kesson, B. (2002) Immunoglobulins, growth factors and growth hormone in bovine colostrums and the effects of processing. Int. Dairy J. 12, 879-887. https://doi.org/10.1016/S0958-6946(02)00089-4
  5. Jeon, S. K. (2001) Characterization of TGF-$\beta$ present in human and bovine colostrum. M.D. Thesis, Kangwon Univ., Chuncheon, Korea.
  6. Jeong, I. Y., Jin, C. H., Pack, Y. D., Lee, H. J., Choi, D. S., Byun, M. W., and Kim, Y. J. (2008) Anti-inflammatory activity of an ethanol extract of Caesalpinia sappan L. in LPSinduced RAW 264.7 cells. J. Food Sci. Nutr. 13, 253-258. https://doi.org/10.3746/jfn.2008.13.4.253
  7. Jin, M., Suh, S. J., Yang, J. H., Lu, Y., Kim, S. J., Kwon, S., Jo, T. H., Kim, J. W., Park, Y. I., Ahn, G. W., Lee, C. K., Kim,C. H., Son, J. K., Son, K. H., and Chang, H. W. (2010) Antiinflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW 264.7 cells via NF-${\kappa}B$ and ERK1/2 inactivation. Food Chem. Toxicol. 48, 3073-3079. https://doi.org/10.1016/j.fct.2010.07.048
  8. Kang, S. H. (2007) Milk-derived growth factors as neutraceuticals. Korean J. Dairy Sci. Technol. 25, 27-31.
  9. Kim, J. W., Jeon, W. K., and Kim, E. J. (2005) Combined effects of bovine colostrum and glutamine in diclofenacinduced bacterial translocation in rat. Clin. Nutr. 24, 785- 793. https://doi.org/10.1016/j.clnu.2005.04.004
  10. Koo, G. C., Manyak, C. L., Dasch, J., Ellingsworth, L., and Shultz, L. D. (1991) Suppressive effects of monocytic cells and transforming growth factor-beta on natural killer cell differentiation in autoimmune viable motheaten mutant mice. J. Immunol. 147, 1197-1200.
  11. Kwon, O. H., Lee, J. S., Choi, H. S., Hong, H. P., Jang, K. H., Park, J. H., Kang, S. A., and Ko, Y. G. (2010) Antioxidant and anfticytokine effects of abovine colostrum in intestinal ischemia/reperfusion injured rat motel. Food Sci. Biotechnol. 19, 1295-1301. https://doi.org/10.1007/s10068-010-0185-9
  12. Liblau, R. S., Singer, S. M., and McDevitt, H. O. (1995) Th1 and Th2 cells in the pathogenesis of organ-specific autoimmune disease. Immunol. Today 16, 34-38. https://doi.org/10.1016/0167-5699(95)80068-9
  13. Matsuno, R., Aramaki, Y., and Tsuchiya, S. (2001) Involvement of TGF-$\beta$ in inhibitory effects of negatively charged liposomes on nitric oxide production by macrophages stimulated with LPS. Biochem. Biophys. Res. Commun. 281, 614- 620. https://doi.org/10.1006/bbrc.2001.4419
  14. Mitani, T., Terashima, M., Yoshimura, H., Nariai, Y., and Tanigawa, Y. (2005) TGF-${\beta}1 $ enhances degradation of IFN- $\gamma$-induced iNOS protein via proteasomes in RAW 264.7 cells. Nitric Oxide 13, 78-87. https://doi.org/10.1016/j.niox.2005.05.001
  15. Nam, M. S., Bae, H. C., Kim, P. H., Kim, W. S., and Goh, J. S. (2002) Purification of TGF-${\beta}1$ from bovine colostrums. Korean J. Food Sci. Ani. Resour. 22, 343-347.
  16. Pakkanen, R. and Aalto, J. (1997) Growth factors and antimicrobial factors of bovine colostrums. Int. Dairy J. 5, 285- 297.
  17. Park, J. D., Son, D. H., Jeong, K. S. (2003) Stability of immunoglobulin G(IgG) by heat treatment. Korean J. Food Preserv. 10, 236-240.
  18. Playford, R. J., Floyd, D. N., MacDonald, C. E., Calnan, D. P., Adenekan, R. O., Johnson, W., Goodlad, R. A., and Marchbank, T. (1999) Bovine colostrums is health food supplement which prevents NSAID induced gut damage. Gut 44, 653- 658. https://doi.org/10.1136/gut.44.5.653
  19. Rodriguez, C., Castro, N., Capote, J., Morales-delaNuez, A., Moreno-Indias, I., Sanchez-Macias, D., and Arguello, A. (2008) Effect of colostrum immunoglobulin concentration on immunity in Majorera goat kids. J. Dairy Sci. 92, 1696-1701.
  20. Simmen, F. A., Cera, K. R., and Maha, D. C. (1990) Stimulation by colostrums or mature milk of gastrointestinal tissue development in newborn pigs. J. Ani. Sci. 68, 3596-3603. https://doi.org/10.2527/1990.68113596x
  21. Srisook, K., Palachot, M., Mongkol, N., Srisook, E., and Sarapusit, S. (2011) Anti-inflammatory effect of ethyl acetate extract from Cissus quadrangularis Linn may be involved with induction of heme oxygenase-1 and suppression of NF-${\kappa}B$ activation. J. Ethnopharm. 133, 1008-1014. https://doi.org/10.1016/j.jep.2010.11.029
  22. Su, H. C., Leite-Morris, K. A., Braun, L., and Biron, C. A. (1991) A role for transforming growth factor-${\beta}1$ in regulating natural killer cells and T lymphocytes proliferative responses during acute infection with lymphocytic choriomeningitis virus. J. Immunol. 147, 2712-2727.
  23. Sugisawa, H., Itou, T., and Sakai, T. (2001) Promoting effect of colostrums on the phagocytic activity of bovine polymorphonuclear leukocytes in vitro. Biol. Neonate 79, 140-144. https://doi.org/10.1159/000047080
  24. Teintenier-Cousin, C., Lefranc-Millot, C., Froidevaux, G., Slomianny, M., Guillochon, D., and Vetcigne, D. (2009) Preparation from bovine colostrum of a fraction rich in latent transforming growth factor-${\beta}2$ and cleared of most allergenic proteins by one-step Cibacron Blue chromatography. Int. Dairy J. 19, 286-294. https://doi.org/10.1016/j.idairyj.2008.12.003
  25. Uruakpa, F. O., Ismond, M. A. H., and Akoboundu, E. N. T. (2002) Colostrum and its benefits: a review. Nutr. Res. 22, 755-767. https://doi.org/10.1016/S0271-5317(02)00373-1
  26. Yang, H. J., and Lee, S. W. (2006) Antimicrobial activities of lactoferrin and its hydrolysate obtained the colostrums of hanwoo and Holstein cattle. J. Anim. Sci. Technol. 48, 595- 602. https://doi.org/10.5187/JAST.2006.48.4.595