DOI QR코드

DOI QR Code

The Biological Effects of Bovine Lactoferrin on Inflammatory Cytokine Expression in the PMA Stimulated Cells

PMA로 자극되어진 세포에서 염증 Cytokine 발현에 미치는 Bovine Lactoferrin의 생물활성 영향

  • Chung, Sung-Hee (Department of Animal Biosystem Science, Chungnam National University) ;
  • Kang, Ho-Bum (Genomics Medical Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jae-Wha (Genomics Medical Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Sung-Sik (Division of Biological Science and Technology, Yonsei University) ;
  • Nam, Myoung-Soo (Department of Animal Biosystem Science, Chungnam National University)
  • 정승희 (충남대학교 농업생명과학대학 동물바이오시스템과학과) ;
  • 강호범 (한국생명공학연구원 유전체의학연구센터) ;
  • 김재화 (한국생명공학연구원 유전체의학연구센터) ;
  • 윤성식 (연세대학교 생명과학기술학부) ;
  • 남명수 (충남대학교 농업생명과학대학 동물바이오시스템과학과)
  • Received : 2012.01.30
  • Accepted : 2012.06.08
  • Published : 2012.06.30

Abstract

Bovine lactoferrin is well known as biological activator in defense mechanism related some cells. In this study, we was investigated about the immune modulator as a role of lactoferrin through the transcriptional regulation of genes associated with hypersensitivity such as allergy, athma and inflammatory disease. Effects of inflammatory reaction of bovine lactoferrin was carried out by RT-PCR analysis from isolated total RNA treated with lactoferrin 0, 10, 50, 100, 500 ${\mu}g/mL$ and PMA 100 ng/mL. The expression of the TYROBP, PITPNA, IL-10, SLP1, DC-stamp and ICAM-1 mRNA were increased by synergy effect of bovine lactoferrin and PMA. The results of RT-PCR showed that bovine lactoferrin and PMA had an effect of immune modulator by enhancement of TYROBP, PITPNA, SLP1, DC-stamp, IL-10 and ICAM-1 gene transcription in U937, Mutz-3 and NK92 cells, respectively. Bovine lactoferrin showed a potential of biological function which could be used for industrial applications as a material of food and pharmaceutical.

유청단백질의 일종인 lactoferrin은 이미 많은 보고에 의해서 여러 가지 생리활성기능이 있는 것으로 밝혀지고 있는데, U937, NK92, 수지상세포의 분화된 상태인 mutz-3와 muDC를 이용하여 과민반응과 천식, 면역 관련 유전자의 발현에 미치는 영향을 조사 한 결과 의미 있는 결과를 도출하였다. Lactoferrin 단독 또는 면역증강물질인 PMA와 혼합하여 처리 한 경우 상승효과 작용으로 과민반응과 천식, 면역 관련 유전자의 발현을 강하게 유도하였다. 이는 유청단백질의 주요 성분 중 하나인 lactoferrin이 면역기전에 중요한 역할을 하고 있다는 결과로 사료된다.

Keywords

References

  1. Arnold, R. R., Cole, M. F., and McGhee, J. R. (1977) A bactericidal effect for human lactoferrin. Science 197, 263-265. https://doi.org/10.1126/science.327545
  2. Brock, J. (1995) Lactoferrin: A multifunctional immunoregulatory protein. Immunology Today 16, 417-419. https://doi.org/10.1016/0167-5699(95)80016-6
  3. Ellison, R. T., Giel, T. J. and Laforce, F. M. (1988) Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56, 2774-2781.
  4. Elass, E., Masson, M., Mazurier, J., and Legrand, D. (2002) Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells. Infect. Immun. 70, 1860-1866. https://doi.org/10.1128/IAI.70.4.1860-1866.2002
  5. Freiburghaus, C., Janicke, B., Lindmark-Msson, H., Oredsson, S. M. and Paulsson, M. A. (2009) Lactoferricin treatment decrease the rate of cell proliferation of a human colon cancer cell line. J. Dairy Sci. 92, 2477-2484. https://doi.org/10.3168/jds.2008-1851
  6. Gifford, J. L., Hunter, H. N., Vogel, H. J. (2005) Lactoferrin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol. Life Sci. 62, 2588-2598. https://doi.org/10.1007/s00018-005-5373-z
  7. Lang, J., Yang, N., Deng, J., Liu, K., Yang, P., Zhang, G. and Jiang, C. (2011) Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One 6, e23710. https://doi.org/10.1371/journal.pone.0023710
  8. Legrand, D., Elass, E., Carpentier, M. and Mazurier, J. (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol. Life Sci. 62, 2549-2559. https://doi.org/10.1007/s00018-005-5370-2
  9. Legrand, D., Elass, E., Carpentier, M. and Mazurier, J. (2006) Interaction of lactoferrin with cells involved in immune function. Biochem. Cell Biol. 84, 282-290. https://doi.org/10.1139/o06-045
  10. Li, E. W. and Mine, Y. (2004) Immunoenhancing effects of bovine glycomacropeptide and its derivatives on the proliferative response and phagocytic activities of human macrophaglike cells, U937. J. Agri. Food Chem. 52, 2704-2708. https://doi.org/10.1021/jf0355102
  11. Masson, P. L. and Heremans, J. F. (1971) Lactoferrin in milk from different species. Comp. Biochem. Physiol. 39B, 119- 129.
  12. Mulder, A. M., Connellan, P. A., Oliver, C. J., Morris, C. A., and Stevenson, L. M. (2008) Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males. Nutr. Res. 28, 583-589. https://doi.org/10.1016/j.nutres.2008.05.007
  13. Pellegrini, A., Dettling, C., Thomas, U., and Hunziker, P. (2001) Isolation and characterization of four bactericidal domains in the bovi Ne $\beta$-lactoglobulin. Biochem. Biophys. Acta 1526, 131-140. https://doi.org/10.1016/S0304-4165(01)00116-7
  14. Spadaro, M., Caorsi, C., Ceruti, P., Varadhachary, A., forni, G., Pericle, F., and Giovarelli, M. (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J. 22, 2747-2757. https://doi.org/10.1096/fj.07-098038
  15. Suzuki, T., Nonaka, M., Kiyosawa, I., and Ogasa, K. (1977) Lactoferrin contents in bovine colostrum and milk. J. Jpn. Soc. Food Nutr. 30, 317-322.
  16. Wong, K. F., Middleton, N., Montgomery, M., Dey, M., and Carr, R. I. (1998) Immunostimulation of murine spleen cells by materials associated with bovine milk protein fractions. J. Dairy Sci. 81, 1825-1832. https://doi.org/10.3168/jds.S0022-0302(98)75752-2

Cited by

  1. Lactoferrin Induces the Synthesis of Vitamin B6 and Protects HUVEC Functions by Activating PDXP and the PI3K/AKT/ERK1/2 Pathway vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030587
  2. Lactoferrin Exerts Antitumor Effects by Inhibiting Angiogenesis in a HT29 Human Colon Tumor Model vol.65, pp.48, 2012, https://doi.org/10.1021/acs.jafc.7b03390
  3. Characterization of lactoferrin hydrolysates on inflammatory cytokine expression in Raw264.7 macrophages vol.45, pp.3, 2018, https://doi.org/10.7744/kjoas.20180048
  4. Effect of Heat Treatment on the Antitumor Activity of Lactoferrin in Human Colon Tumor (HT29) Model vol.67, pp.1, 2012, https://doi.org/10.1021/acs.jafc.8b05131
  5. Furosine Posed Toxic Effects on Primary Sertoli Cells through Regulating Cep55/NF-κB/PI3K/Akt/FOX01/TNF-α Pathway vol.20, pp.15, 2012, https://doi.org/10.3390/ijms20153716
  6. Modulation activity of heat-treated and untreated lactoferrin on the TLR-4 pathway in anoxia cell model and cerebral ischemia reperfusion mouse model vol.103, pp.2, 2012, https://doi.org/10.3168/jds.2019-17002
  7. The Combination of Two Bioactive Constituents, Lactoferrin and Linolenic Acid, Inhibits Mouse Xenograft Esophageal Tumor Growth by Downregulating Lithocholyltaurine and Inhibiting the JAK2/STAT3-Relat vol.5, pp.33, 2012, https://doi.org/10.1021/acsomega.0c01132
  8. A Novel Human Recombinant Lactoferrin Inhibits Lung Adenocarcinoma Cell Growth and Migration with No Cytotoxic Effect on Normal Human Epithelial Cells vol.69, pp.1, 2012, https://doi.org/10.1007/s00005-021-00637-2