DOI QR코드

DOI QR Code

Characterization and deposition of Cu2ZnSnS4 film for thin solar cells via sol-gel method

Sol-gel법에 의한 박막태양전지용 Cu2ZnSnS4 박막의 증착과 특성

  • Kim, Gwan-Tae (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Lee, Sang-Hyun (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Park, Byung-Ok (Department of Inorganic Materials Engineering, Kyungpook National University)
  • 김관태 (경북대학교 무기재료공학과) ;
  • 이상현 (경북대학교 무기재료공학과) ;
  • 박병옥 (경북대학교 무기재료공학과)
  • Received : 2012.04.27
  • Accepted : 2012.06.15
  • Published : 2012.06.30

Abstract

To achieve low-cost and high-efficiency of thin-film solar cells applications, the sol-gel method that can be coated on a large area substrate, obtain homogeneous thin films of high purity was used. We studied structural and optical characteristics versus annealing temperature of $Cu_2ZnSnS_4$ which has kesterite structure by substitution low-cost sulfur (S) instead of high-cost selenium (Se). By analyzing XRD patterns, main peak was observed at $2{\theta}=28.5^{\circ}$ when Zn/Sn ratio is 0.8/1.2. And when we observed kesterite structure which has orientation of (112) direction, the more annealing temperature increase the bigger strength of (112) direction is. $Cu_2ZnSnS_4$ thin film showed characteristics of kesterite structure at $550^{\circ}C$. And when we calculated lattice constant, a = 5.5047 and $c=11.014{\AA}$ as same JCPDS (Joint Committee on Powder Standards) data measured. We measured optical transmittance to analyze optical characteristics. Optical transmittance was lower than 65 % at visible ray (${\lambda}=380{\sim}770nm$).

박막 태양전지의 저가 고효율화를 실현하기 위해 넓은 면적의 기판 위에 코팅이 가능하며 진공의 유지가 필요가 없고 장치가 간단하며 고순도의 균질한 박막을 얻을 수 있고 박막의 조성을 쉽게 조절할 수 있는 Sol-Gel법을 이용하였다. Se보다 저가이며 독성이 없고 풍부한 원료인 S로 치환하여 사용하며 Zn/Sn비 값을 조절하고 kesterite 구조를 갖는 $Cu_2ZnSnS_4$의열처리 온도에 따른 박막의 구조적, 광학적 특성에 미치는 변수들의 영향을 알아보았다. XRD pattern을 관찰한 결과 Zn/Sn비가 0.8/1.2일 때 $2{\theta}=28.5^{\circ}$에서 주피크가 가장 강하게 나타났으며 (112) 방향의 배향성을 가진 kesterite 상임을 확인 할 수 있었다. 열처리 온도가 증가할수록 (112) 면의 강도가 커지며 $550^{\circ}C$에서 열처리를 한 $Cu_2ZnSnS_4$ 박막은 kesterite 구조의 화학량론적 $Cu_2ZnSnS_4$ 특징을 나타내고 본 실험의 샘플의 격자상수를 측정한 값이 a = 5.5047 and $c=11.014{\AA}$이며 JCPDS(Joint Committee on Powder Standards)에 보고된 데이터 a = 5.427 and $c=10.848{\AA}$과 거의 일치 하였다. 광학적 특성을 알아보기 위해 측정한 광투과율은 가시광선 영역(380~770 nm)에서 전체적으로 65 % 이하로 나타났다.

Keywords

References

  1. H. Hisizawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, "Crystallization and transformation of zirconia under hydrothermal conditions", J. Am. Ceram. Soc. 65 (1982) 343. https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
  2. Stefan Seeger and Klaus Ellmer, "Reactive magnetron sputtering of $CuInS_{2}$ absorbers for thin film solar cells: Problems and prospects", Thin Solid Films 517 (2009) 3143. https://doi.org/10.1016/j.tsf.2008.11.120
  3. R. Cayzac, F. Boulc'h, M. Bendahan, P. Lauque and P. Knauth, "Direct preparation of crystalline $CuInS_{2}$ thin films by radiofrequency sputtering", Materials Science and Engineering: B 157 (2009) 66. https://doi.org/10.1016/j.mseb.2008.12.018
  4. D. Abou-Ras, G. Kostorz, D. Hariskos, R. Menner, M. Powalla, S. Schorr and A.N. Tiwari, "Structural and chemical analyses of sputtered InxSy buffer layers in $Cu(In,Al)Se_{2}$ thin-film solar cells", Thin Solid Films 517 (2009) 2792. https://doi.org/10.1016/j.tsf.2008.10.138
  5. Takao Hayashi, Takashi Minemoto, Guillaume Zoppi, Ian Forbes, Kiyoteru Tanaka, Satoshi Yamada, Tsutomu Araki and Hideyuki Takakura, "Effect of composition gradient in $Cu(In,Al)Se_{2}$ solar cells", Solar Energy Materials and Solar Cells 93 (2009) 922. https://doi.org/10.1016/j.solmat.2008.11.007
  6. L. Oliveira, T. Todorov, E. Chassaing, D. Lincot, J. Carda and P. Escribano, "CIGSS films prepared by solgel route", Thin Solid Films 517 (2009) 2272. https://doi.org/10.1016/j.tsf.2008.10.104
  7. S. Sakka, H. ozuka, T. Yoko and M. Ohyama, "Preparation of ZnO films with preferential orientation by solgel method", Jpn. J. Ceram. Soc. 104(4) (1996) 196. https://doi.org/10.2109/jcersj.104.196
  8. Y. Haiping, Z. Xinxiang, Z. Yulu, Y. Longqiang, X. Bo, L. Haibing and J. Bo, "Preparation of antireflective coatings with high transmittance and enhanced abrasionresistance by a base/acid two-step catalyzed sol-gel process", Solar Energy Materials & Solar Cells 95 (2011) 2347. https://doi.org/10.1016/j.solmat.2011.04.004
  9. S.-H. Lee, S.-Y. Lee and B.-O. Park, "Characteristics and Deposition of $CuInS_{2}$ film for thin solar cell via solgel mathod", Journal of the Korean Crystal Growth and Crystal Technology 21(4) (2011) 158. https://doi.org/10.6111/JKCGCT.2011.21.4.158
  10. K.H. Kim, J.S. Park, J.H. Chae, W.S. Seo, S.M. So, T.K. Kim, H.S. Kim and B.H. Lee, "Fabrication and properties of Calcium-aluminate electride thin films using by sol-gel process", Journal of the Korean Crystal Growth and Crystal Technology 20(6) (2010) 262. https://doi.org/10.6111/JKCGCT.2010.20.6.262
  11. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons and W.E. Buhro, "Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth", Science 270 (1995) 1791. https://doi.org/10.1126/science.270.5243.1791
  12. K. Zweibel, "Reproducibility studies on thin-film copperindium diselenide prepared from copper indium oxide", Solar Energy Material & Solar Cell (2000) p. 375.
  13. Photovoltaic Energy Program Overview Fiscal 2000, US DOE (2001).
  14. K. Ito and T. NAkazawa, "Electrical and optical properties of stannite-type quaternary semiconductor thin films", Jpn. J. Appl. Phys. 27 (1988) 2094.
  15. H. Rodriguez-Alvarez, I.M. Koetschau, C. Genzel and H.W. Schock, "Growth paths for the sulfurization of Cu-rich Cu/In thin films", Thin Solid Films 517 (2009) 2140. https://doi.org/10.1016/j.tsf.2008.10.091
  16. C.D. Wagner, W.M. Riggs, L.F. Davis, J.F. Moulder and G.E. Muilenbug, Handbook of X-ray photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prainie (1978).
  17. F.O. Adurodijaa, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon and B.T. Ahn, "Growth of $CuInSe_{2}$ thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container", Thin Solid Films 338 (1999) 13.

Cited by

  1. absorber layer by a non-vacuum process of low cost cryogenic milling vol.23, pp.2, 2013, https://doi.org/10.6111/JKCGCT.2013.23.2.108
  2. thin film by sol-gel process vol.24, pp.3, 2014, https://doi.org/10.6111/JKCGCT.2014.24.3.094