DOI QR코드

DOI QR Code

Lactobacillus plantarum ZLP001: In vitro Assessment of Antioxidant Capacity and Effect on Growth Performance and Antioxidant Status in Weaning Piglets

  • Wang, J. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences) ;
  • Ji, H.F. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences) ;
  • Wang, S.X. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences) ;
  • Zhang, D.Y. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences) ;
  • Liu, H. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences) ;
  • Shan, D.C. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences) ;
  • Wang, Y.M. (Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences)
  • Received : 2012.02.09
  • Accepted : 2012.06.01
  • Published : 2012.08.01

Abstract

The objective of this study was to evaluate the antioxidant capacity of Lactobacillus plantarum ZLP001 and its effects on growth performance and antioxidant status in weaning piglets. The survival in hydrogen peroxide and free radical-scavenging activity of Lactobacillus plantarum ZLP001 were analysed in vitro. The Lactobacillus plantarum ZLP001 showed high viability in 1.0 mmol/L hydrogen peroxide and high scavenging ability against hydroxyl, superoxide anion, and DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals which was dose dependent. Ninety-six weaning piglets were selected ($7.45{\pm}0.79kg$) and divided into three groups comprising of negative control without any supplementation, treatment group with supplemented $6.8{\times}10^7$ Lactobacillus plantarum ZLP001 CFU/g of diet, and positive control with antibiotic treatment (chlorotetracycline, 80 mg/kg diet). The results showed that Lactobacillus plantarum ZLP001 supplementation enhanced feed conversion rates in piglets compared with control (p<0.05). Supplementation of Lactobacillus plantarum ZLP001 increased the concentration of superoxide dismutase (p<0.05), glutathione peroxidase (p<0.01) and catalase in serum (p<0.10), while decreased the concentration of malondialdehyde (p<0.05). The present study implies that the strain Lactobacillus plantarum ZLP001 had high antioxidant ability and its supplementation improved the growth performance and antioxidant status of weaning piglets, so it can be considered useful to alleviate oxidative stress and increase productive performance of pigs.

Keywords

References

  1. Ardestani, A. and R. Yazdanparast. 2007. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 104:21-29. https://doi.org/10.1016/j.foodchem.2006.10.066
  2. Chang, Y. H., J. K. Kim, H. J. Kim, W. Y. Kim, Y. B. Kim and Y. H. Park. 2001. Selection of a potential probiotics Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek 80:193-199. https://doi.org/10.1023/A:1012213728917
  3. Cormwell, G. L. 2002. Why and how antibiotics are used in swine production. Anim. Biotechnol. 13:7-27. https://doi.org/10.1081/ABIO-120005767
  4. de Avellar, I. G., M. M. Magalhaes, A. B. Silva, L. L. Souza, A. C. Leitao and M. Hermes-Lima. 2004. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage. Biochim. Biophys. Acta 1675:46-53. https://doi.org/10.1016/j.bbagen.2004.08.006
  5. Duthie, G. G., J. R. Arthur, F. Nicol and M. Walker. 1989. Increased indices of lipid peroxidation in stress-susceptible pigs and effects of vitamin E. Res. Vet. Sci. 46:226-230.
  6. Farmer, E. H., G. F. Bloomfield, A. Sundralingam and D. A. Sutton. 1942. The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans. Faraday Soc. 38:348-356. https://doi.org/10.1039/tf9423800348
  7. Francisco, T., R. Juan, F. Erenia and L. R. Maria. 1995. Response of piglets to oral administration of lactic acid bacteria. J. Food Prot. 58:1369-1374.
  8. Halliwell, B. and J. M. C. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1-4.
  9. Halliwell, B. and J. M. C. Gutteridge. 1989. Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1: 441-445.
  10. Hampson, D. J. 1994. Postweaning Escherichia coli diarrhea in pigs. Escherichia coli in Domestic Animals and Humans (Ed. C. L. Gyles) pp. 171-791. CAB International. London, England.
  11. Ito, M., K. Ohishi, Y. Yoshida, W. Yokoi and H. Sawada. 2003. Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice. J. Agric. Food Chem. 51:4456-4460. https://doi.org/10.1021/jf0261957
  12. Janero, D. R. 1990. Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 9:515-540. https://doi.org/10.1016/0891-5849(90)90131-2
  13. Kaizu, H., M. Sasaki, H. Nakajima and Y. Suzuki. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76:2493-2499. https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  14. Kim, H. S., H. S. Chae, S. G. Jeong, J. S. Ham, S. K. Im, C. N. Ahn and J. M. Lee. 2006. In vitro antioxidative properties of Lactobacilli. Asian-Aust. J. Anim. Sci. 19:262-265.
  15. Koninkx, J. F. J. G. and J. J. Malago. 2008. The protective potency of probiotic bacteria and their microbial products against enteric infections. Folia Microbiol. 53:189-194. https://doi.org/10.1007/s12223-008-0023-0
  16. Kullisaar, T., E. Songisepp, M. Mikelsaar, K. Zilmer, T. Vihalemm and M. Zilmer. 2003. Antioxidative probiotic fermented goats' milk decreases oxidative stressmediated atherogenicity in human subjects. Br. J. Nutr. 90:449-456. https://doi.org/10.1079/BJN2003896
  17. Kullisaar, T., M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane and A. Kilk. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72: 215-224. https://doi.org/10.1016/S0168-1605(01)00674-2
  18. Lauridsen, C., S. Hojsgaard and M. T. Sorensen. 1999. Influence of dietary rapeseed oil, vitamin E, and copper on the performance and the antioxidative and oxidative status of pigs. J. Anim. Sci. 77:906-916.
  19. Lin, M. Y. and F. J. Chang. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45:1617-1622. https://doi.org/10.1023/A:1005577330695
  20. Nielsen, F., B. B. Mikkelsen, J. B. Nielsen, H. R. Anderson and P. Grandjean. 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin. Chem. 43:1209-1214.
  21. NRC. 1998. Nutrient Requirements of Swine, 10th Edition. National Academic Press. Washington, DC, USA.
  22. Ouwehand, A. C., S. Salminen and E. Isolauri. 2002. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279-289. https://doi.org/10.1023/A:1020620607611
  23. Ouwehand, A. C. and S. Vesterlund. 1998. Antimicrobial components from lactic acid bacteria. Lactic Acid Bacteria (Ed. S. Salminen, A. Wright and A. Ouwehand) pp. 375-388. Marcel Dekker Inc. New York, USA.
  24. SAS. 1997. SAS/STAT user's guide, Version 9. SAS Institute Inc. Cary, NC, USA.
  25. Sauerwein, H., S. Schmitz and S. Hiss. 2007. Effects of a dietary application of a yeast cell wall extract on innate and acquired immunity, on oxidative status and growth performance in weanling piglets and on the ileal epithelium in fattened pigs. J. Anim. Physiol. Anim. Nutr. 91:369-380. https://doi.org/10.1111/j.1439-0396.2006.00663.x
  26. Shimada, K. K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948. https://doi.org/10.1021/jf00018a005
  27. Wang, A. N., X. W. Yi, H. F. Yu, B. Dong and S. Y. Qiao. 2009. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on gorwing-finishing pigs. J. Appl. Microbiol. 107:1140-1148. https://doi.org/10.1111/j.1365-2672.2009.04294.x
  28. Zhan, X. A., M. Wang, Z. R. Xu, W. F. Li and J. X. Li. 2006. Effects of fluoride on hepatic antioxidant system and transcription of Cu/Zn SOD gene in young pigs. J. Trace Elem. Med. Biol. 20:83-87. https://doi.org/10.1016/j.jtemb.2005.11.003
  29. Zhao, Y. P., W. L. Yu and D. P. Wang. 2003. Chemiluminescence determination of free radical scavenging abilities of 'tea pigments' and comparison with 'tea polyphenols'. Food Chem. 80:115-118. https://doi.org/10.1016/S0308-8146(02)00241-8

Cited by

  1. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0119058
  2. C88 vol.50, pp.7, 2015, https://doi.org/10.1111/ijfs.12824
  3. Antioxidant properties of formula derived Maillard reaction products in colons of intrauterine growth restricted pigs vol.7, pp.6, 2016, https://doi.org/10.1039/C5FO01551K
  4. IIA-2B4 vol.81, pp.11, 2016, https://doi.org/10.1111/1750-3841.13509
  5. Effects of Humate and Probiotic on the Number of Escherichia coli, Blood and Antioxidant Parameters in Suckling Period of Calves vol.12, pp.3, 2017, https://doi.org/10.3923/ajava.2017.169.176
  6. Effects of probiotic Bacillus as a substitute for antibiotics on antioxidant capacity and intestinal autophagy of piglets vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0353-x
  7. ) vol.102, pp.2, 2018, https://doi.org/10.1111/jpn.12854
  8. Complete Genome Sequencing of Lactobacillus plantarum ZLP001, a Potential Probiotic That Enhances Intestinal Epithelial Barrier Function and Defense Against Pathogens in Pigs vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.01689
  9. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets vol.9, pp.9, 2018, https://doi.org/10.1039/C8FO01126E
  10. Probiotic Lactobacillus plantarum Promotes Intestinal Barrier Function by Strengthening the Epithelium and Modulating Gut Microbiota vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01953
  11. Swine-Derived Probiotic Lactobacillus plantarum Inhibits Growth and Adhesion of Enterotoxigenic Escherichia coli and Mediates Host Defense vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01364
  12. Protective effects of probioticLactobacillus plantarumBJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats vol.37, pp.8, 2012, https://doi.org/10.3109/0886022x.2015.1073543
  13. Gene expression profile changes in the jejunum of weaned piglets after oral administration of Lactobacillus or an antibiotic vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-16158-y
  14. Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy vol.7, pp.4, 2012, https://doi.org/10.3390/microorganisms7040097
  15. Lentinan administration relieves gut barrier dysfunction induced by rotavirus in a weaned piglet model vol.10, pp.4, 2012, https://doi.org/10.1039/c8fo01764f
  16. Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature vol.9, pp.8, 2012, https://doi.org/10.1007/s13205-019-1819-0
  17. Supplementation of Lactobacillus plantarum or Macleaya cordata Extract Alleviates Oxidative Damage Induced by Weaning in the Lower Gut of Young Goats vol.10, pp.4, 2012, https://doi.org/10.3390/ani10040548
  18. Potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat vol.104, pp.3, 2020, https://doi.org/10.1111/jpn.13252
  19. Lactobacillus plantarum Exhibits Antioxidant and Cytoprotective Activities in Porcine Intestinal Epithelial Cells Exposed to Hydrogen Peroxide vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/8936907
  20. Comparative Effects of L. plantarum CGMCC 1258 and L. reuteri LR1 on Growth Performance, Antioxidant Function, and Intestinal Immunity in Weaned Pigs vol.8, pp.None, 2012, https://doi.org/10.3389/fvets.2021.728849
  21. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics vol.14, pp.2, 2012, https://doi.org/10.14202/vetworld.2021.319-328
  22. Lactobacillus delbrueckii Protected Intestinal Integrity, Alleviated Intestinal Oxidative Damage, and Activated Toll-Like Receptor-Bruton’s Tyrosine Kinase-Nuclear Factor Erythroid 2-Related Fac vol.10, pp.3, 2021, https://doi.org/10.3390/antiox10030468
  23. Evaluation of the probiotic and functional potential of Lactobacillus agilis 32 isolated from pig manure vol.73, pp.1, 2012, https://doi.org/10.1111/lam.13422
  24. The Probiotic Properties of Lactic Acid Bacteria and Their Applications in Animal Husbandry vol.79, pp.1, 2012, https://doi.org/10.1007/s00284-021-02722-3