DOI QR코드

DOI QR Code

Chlorogenic Acid Enhances Glucose Metabolism and Antioxidant System in High-fat Diet and Streptozotocin-induced Diabetic Mice

고지방식이와 스트렙토조토신으로 유도한 당뇨마우스에서 Chlorogenic Acid의 혈당강하 및 항산화 효과

  • Lee, Jin (Dept. of Food and Nutrition, Sunchon National University) ;
  • Seo, Kwon-Il (Dept. of Food and Nutrition, Sunchon National University) ;
  • Kim, Myung-Joo (Dept. of Hotel Cuisine, Suseong College) ;
  • Lee, Su-Jin (Dept. of Hotel Cuisine, Suseong College) ;
  • Park, Eun-Mi (Division of Bio-Applied Science, Sung Duck C. University) ;
  • Lee, Mi-Kyung (Dept. of Food and Nutrition, Sunchon National University)
  • 이진 (순천대학교 식품영양학과) ;
  • 서권일 (순천대학교 식품영양학과) ;
  • 김명주 (수성대학교 호텔조리계열) ;
  • 이수진 (수성대학교 호텔조리계열) ;
  • 박은미 (성덕대학교 바이오실용과학계열) ;
  • 이미경 (순천대학교 식품영양학과)
  • Received : 2012.02.15
  • Accepted : 2012.04.20
  • Published : 2012.06.30

Abstract

This study investigated dose-response effects of chlorogenic acid (CA) on glucose metabolism and the antioxidant system in streptozotocin (STZ)-induced diabetic mice with a high-fat diet (HFD). Male ICR mice were fed with a HFD (37% calories from fat) for 4 weeks prior to intraperitoneal injection with STZ (100 mg/kg body weight). Diabetic mice were supplemented with two doses of CA (0.02% and 0.05%, wt/wt) for 6 weeks. Both doses of CA significantly improved fasting blood glucose level, glucose tolerance and insulin tolerance without any changes in plasma insulin and C-peptide levels. Plasma leptin concentration was significantly higher in the CA-supplemented groups than in the diabetic control group. Both doses of CA significantly increased hepatic glucokinase activity and decreased glucose-6-phosphatase activity compared to the diabetic control group. The ratio of glucokinase/glucose-6-phosphatase was dose-independently higher in CA-supplemented mice than in diabetic control mice. CA supplementation dose-independently elevated superoxide dismutase and catalase activities, whereas it lowered lipid peroxide levels compared to the diabetic control mice in the liver and erythrocyte. These results suggest that low-dose CA may be used as a hypoglycemic agent in a high-fat diet and STZ-induced diabetic mice.

본 연구는 고지방식이와 STZ으로 유도한 제2형 당뇨마우스에게 CA를 급여하였을 때 체내 당대사와 항산화방어계에 미치는 영향을 규명하고자 하였다. 4주령 ICR 마우스를 고지방식이(전체 열량의 37% 지방)를 4주간 급여하여 인슐린저항성을 유발한 후 STZ(100 mg/kg body weight)을 일회복강주사 하였다. 7일 후 공복 시 혈당이 14 mmol/L(250 mg/dL)인 마우스만을 사용하여 난괴법으로 당뇨대조군, 0.02% CA군, 0.05% CA군으로 나누어 6주간 사육하였다. 실험 6주 동안 당뇨대조군에 비하여 두 CA 급여 수준은 혈당을 효과적으로 낮추었으며 내당능과 인슐린내성을 개선하였다. 또한 혈장 중의 렙틴 함량은 CA 급여 시 당뇨대조군에 비하여 높았으나 인슐린과 C-peptide 함량 및 체중에는 영향을 미치지 않았다. CA 급여는 당뇨대조군에 비하여 간조직의 GK활성을 높였고 G6Pase 활성은 낮춘 반면, PEPCK 활성에는 영향을 미치지 않았다. 간조직 중의 SOD와 CAT 활성은 CA급여군에서 당뇨대조군에 비하여 유의적으로 높았으나, GSH-Px 활성과 적혈구의 항산화 효소 활성은 실험군간 유의적인 변화가 없었다. 두 수준의 CA 급여는 간조직과 적혈구 중의 지질과산화물 함량을 당뇨대조군에 비하여 유의적으로 낮추었다. 이와 같이 CA는 간조직에서 당 이용을 높이는 반면, 당 신생을 억제함으로써 혈당저하에 효과적이었으며 항산화방어계를 활성화하여 지질과산화물 생성을 개선하는데 효과적인 것으로 나타났다.

Keywords

References

  1. Rhee SY, Kim YS, Oh S, Choi WH, Park JE, Jeong WJ. 2005. Diabcare Asia 2001-Korea country report on outcome data and analysis. Korean J Intern Med 20: 48-54. https://doi.org/10.3904/kjim.2005.20.1.48
  2. Schwarz PE. 2005. Report from the congress of the American Diabetes Association (ADA). Exp Clin Endocrinol Diabetes 113: 475-479. https://doi.org/10.1055/s-2005-865942
  3. Ministry of Health and Welfare. 2010. Korea Health Statistics 2010: Korea National Health and Nutrition Examination Surveys (KNHANES V-1). Ministry of Health and Welfare, Korea.
  4. Sakurai T, Tsuchiya S. 1988. Superoxide production from nonenzymatically glycated protein. FEBS Lett 236: 406-410. https://doi.org/10.1016/0014-5793(88)80066-8
  5. Cosio FG, Kudva Y, Velde M, Larson TS, Textor SC, Griffin MD, Stegall MD. 2005. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int 67: 2415-2421. https://doi.org/10.1111/j.1523-1755.2005.00349.x
  6. Jay D, Hitomi H, Griending KK. 2006. Oxidative stress and diabetic cardiovascular complications. Free Radical Biol Med 40: 183-192. https://doi.org/10.1016/j.freeradbiomed.2005.06.018
  7. Baynes JW. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412. https://doi.org/10.2337/diabetes.40.4.405
  8. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  9. Chen JH, Ho CT. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45: 2374-2378. https://doi.org/10.1021/jf970055t
  10. Nicasio P, Aguilar-Santamaria L, Aranda E, Ortiz S, Gonzalez M. 2005. Hypoglycemic effect and chlorogenic acid content in two Cecropia species. Phytother Res 19: 661-664. https://doi.org/10.1002/ptr.1722
  11. Rodriguez de Sotillo DV, Hadley M. 2000. Chlorogenic acid modifies plasma and liver concentrations of cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 13: 717-726.
  12. Rodriguez de Sotillo DV, Hadley M, Sotillo JE. 2006. Insulin receptor exon 11+/- is expressed in zucker (fa/fa) rats and chlorogenic acid modifies their plasma insulin and liver protein and DNA. J Nutr Biochem 17: 63-71. https://doi.org/10.1016/j.jnutbio.2005.06.004
  13. Bassoli BK, Cassola P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM. 2008. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26: 320-328. https://doi.org/10.1002/cbf.1444
  14. Thom E. 2007. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35: 900-908. https://doi.org/10.1177/147323000703500620
  15. Li BH, Ma XF, Wu XD, Tian WX. 2006. Inhibitory activity of chlorogenic acid on enzymes involved in the fatty acid synthesis in animals and bacteria. IUBMB Life 58: 39-46. https://doi.org/10.1080/15216540500507408
  16. Cho AS, Jeon SM, Kim MJ, Yeo JY, Seo KI, Choi MS, Lee MK. 2010. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-inducedobese mice. Food Chem Toxicol 48:937-943. https://doi.org/10.1016/j.fct.2010.01.003
  17. Reed MJ, Scribner KA. 1999. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obes Metab 1:75-86. https://doi.org/10.1046/j.1463-1326.1999.00014.x
  18. Lv L, Wu SY, Wang GF, Zhang JJ, Pang JX, Liu ZQ, Xu W, Wu SG, Rao JJ. 2010. Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Phytother Res 24: 219-224.
  19. American Institute of Nutrition. 1977. Report of the American Institute of Nutrition ad hoc Committee of Standard for Nutritional Studies. J Nutr 107: 1340-1348.
  20. McCord JM, Fridovich I. 1969. Superoxide dismutase: an enzymetic function for erythrocuprein (Hemocuprein). J Biol Chem 244: 2049-6055.
  21. Hulcher FH, Oleson WH. 1973. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 14: 625-631.
  22. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  23. Davidson AL, Arion WJ. 1987. Factors underlying significant underestimation of glucokinase activity in crude liver extract: physiological implications of higher cellular activity. Arch Biochem Biophys 253: 156-167. https://doi.org/10.1016/0003-9861(87)90648-5
  24. Newgard CB, Hirsch LJ, Foster DW, McGarry DJ. 1983. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. J Biol Chem 258: 8046-8052.
  25. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. 1988. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem 173: 185-189. https://doi.org/10.1016/0003-2697(88)90176-5
  26. Bentle LA, Lardy HA. 1976. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem 251: 2916-2921.
  27. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  28. Aebi H. 1988. Catalase in vitro. Methods Enzymol 105: 121-126.
  29. Paglia ED, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70: 158-169.
  30. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  31. Tarladgis BG, Pearson AM, Dugan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agric 15: 602-607. https://doi.org/10.1002/jsfa.2740150904
  32. Mullarkey CJ, Edelstein D, Brownlee M. 1990. Free radical generation by glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173: 932-939. https://doi.org/10.1016/S0006-291X(05)80875-7
  33. Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. 2006. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318: 476-483. https://doi.org/10.1124/jpet.106.105163
  34. Karthikesan K, Pari L, Menon VP. 2010. Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 29: 23-30. https://doi.org/10.4149/gpb_2010_01_23
  35. Ong KW, Hsu A, Song L, Huang D, Tan BKH. 2011. Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. Ethnopharmacology 133: 598-607. https://doi.org/10.1016/j.jep.2010.10.046
  36. Mohamed-Ali V, Pinkney JH, Panahloo A, Goodrick S, Coppack SW, Yudkin JS. 1997. Relationships between plasma leptin and insulin concentrations, but not insulin resistance, in non-insulin-dependent (type 2) diabetes mellitus. Diabet Med 14: 376-380. https://doi.org/10.1002/(SICI)1096-9136(199705)14:5<376::AID-DIA370>3.0.CO;2-9
  37. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. https://doi.org/10.1038/372425a0
  38. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. 1995. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural network. Science 269: 546-549. https://doi.org/10.1126/science.7624778
  39. Lee JH, Kim SK, Hur KY, Choi HS, Jung JY, Shim WS, Lee HJ, Ahn CW, Lim SK, Kim KR, Lee HC, Cha BS. 2003. Efficacy of serum leptin level as an indicator to predict the clinical response of rosiglitazone in patients with type 2 diabetes mellitus. Diabetes Metab J 27: 420-432.
  40. Kim DJ, Jeong YJ, Kwon JH, Moon KD, Kim HJ, Jeon SM, Lee MK, Park YB, Choi MS. 2008. Beneficial effect of chungkukjang on regulating blood glucose and pancreatic $\beta$-cell functions in C75BL/KsJ-db/db mice. J Med Food 11: 215-223. https://doi.org/10.1089/jmf.2007.560
  41. Munoz MC, Barbera A, Dominguez J, Fermandez-Alvarez J, Gomis R, Guinovart JJ. 2001. Effects of tungstate, a new potential oral antidiabetic agents in Zucker diabetic fatty rats. Diabetes 50: 131-139. https://doi.org/10.2337/diabetes.50.1.131
  42. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM. 1999. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic $\beta$-cellspecific gene knock-outs using Cre recombinase. J Biol Chem 274: 305-315. https://doi.org/10.1074/jbc.274.1.305
  43. Iynedjian PB, Gjinovei A, Renold AE. 1988. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem 263: 740-744.
  44. DeFronzo RA, Bonadonna RC, Ferrannini E. 1992. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15: 318-368. https://doi.org/10.2337/diacare.15.3.318
  45. Hemmerle H, Burger HJ, Below P, Schubert G, Rippel R, Schindler PW, Paulus E, Herling AW. 1997. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase. J Med Chem 40: 137-145. https://doi.org/10.1021/jm9607360
  46. Parker JC, Vanvolkenburg MA, Levy CB, Martin WH, Burk SH, Kwon Y, Giragossian C, Grant TG, Carpino PA, Mc- Pherson RK, Vestergoard P, Treadway JL. 1998. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. Diabetes 47: 1630-1636. https://doi.org/10.2337/diabetes.47.10.1630
  47. Herling AW, Schwab D, Burger HJ, Maas J, Hammerl R, Schmidt D, Strohschein S, Hemmerle H, Schubert G, Petry S, Kramer W. 2002. Prolonged blood glucose reduction in mrp-2 deficient rats (GY/TR(-)) by the glucose-6-phosphate translocase inhibitors 3025. Biochem Biophys Acta 1569: 105-110. https://doi.org/10.1016/S0304-4165(01)00239-2
  48. Wolff SP, Jiang ZY, Hunt JV. 1991. Protein glycation and oxidative stress in diabetes mellitus and aging. Free Radical Biol Med 10: 339-352. https://doi.org/10.1016/0891-5849(91)90040-A
  49. MeLennan SV, Hefferman S, Wright L. 1991. Changes in hepatic glutathione metabolism in diabetes. Diabetes 40: 344-348. https://doi.org/10.2337/diabetes.40.3.344
  50. Deisseroth A, Dounce AL. 1970. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50: 319-375.
  51. Ceriello A. 1999. Hyperglycaemia: the bridge between nonenzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes Nutr Metab 12: 42-46.
  52. Kim TH, Kim SS, Hong YS, Shin MS, Chung YR, Kang JY. 2005. The effects of 12 weeks exercise program on superoxide dismutase and malondialdehyde of non-insulin dependent diabetes mellitus (NIDDM) patients. JCD 7: 217-224.

Cited by

  1. Effects of ramie leaf extract on blood glucose and lipid metabolism in db/db mice vol.57, pp.5, 2014, https://doi.org/10.1007/s13765-014-4193-y
  2. Acidic-Treated Acorn Pollen as Health Functional Food Materials for Improvement of Post-Menopausal Glucose Metabolism vol.25, pp.1, 2020, https://doi.org/10.3746/pnf.2020.25.1.50