DOI QR코드

DOI QR Code

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering

방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성

  • Lee, Kyoung-Seok (NCRC for Hybrid Materials Solution, Pusan National University) ;
  • Seo, Sung-Ho (Department of Bionanotechnology, HanYang University) ;
  • Jin, Sang-Hyun (Department of Bionanotechnology, HanYang University) ;
  • Yoo, Bong-Young (Department of Materials Engineering, HanYang University) ;
  • Jeong, Young-Keun (NCRC for Hybrid Materials Solution, Pusan National University)
  • 이경석 (부산대학교 하이브리드소재솔루션 국가핵심연구센터) ;
  • 서성호 (한양대학교 바이오나노학과) ;
  • 진상현 (한양대학교 바이오나노학과) ;
  • 유봉영 (한양대학교 재료공학과) ;
  • 정영근 (부산대학교 하이브리드소재솔루션 국가핵심연구센터)
  • Received : 2012.05.24
  • Accepted : 2012.05.31
  • Published : 2012.06.27

Abstract

Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Keywords

References

  1. I. -S. Kim, H. C. Won and B. -S Chun, J. Kor. Inst. Met. & Mater., 35(2), 258 (1997) (in Korean).
  2. S. -E. Nam, J. S. Choi, D. -B. Hyun and T. S. Oh, J. Kor. Inst. Met. Mater., 33(7), 905 (1995) (in Korean).
  3. Y. J. Lee, Kor. J. Mater. Res., 21(8), 456 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.8.456
  4. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). https://doi.org/10.1038/nmat2090
  5. D. -M. Lee, S. -H. Lee, J. -H. Seo and C. -H. Lee, J. Kor. Inst. Met. & Mater., 35(2), 216 (1997) (in Korean).
  6. K. H. Lee, J. H. Park, and B. S. Chun, J. Kor. Inst. Met. & Mater., 43(8), 553 (2005) (in Korean).
  7. I. -S. Kim, C. -W. Hwang and D. -K. Paik, J. Kor. Inst. Met. & Mater., 36(4), 597 (1998) (in Korean).
  8. M. Omori, Mater. Sci. Eng., A 287, 183 (2000).
  9. J. -C. Choi, S. -H. Chang, Y. -H. Cha and I. -H. Oh, Kor. J. Mater. Res., 18(7), 357 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.357
  10. J. -K. Lee, S. -M. Choi, H. -L. Lee and W. -S. Seo, Kor. J. Mater. Res., 20(6), 326 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.6.326
  11. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  12. D. -H. Kim and T. Mitani, J. Alloy. Comp., 399, 14 (2005). https://doi.org/10.1016/j.jallcom.2005.03.021
  13. J. Jiang, L. Chen, S. Bai and Q. Yao, J. Alloy. Comp. 390, 208 (2005). https://doi.org/10.1016/j.jallcom.2004.07.056
  14. Z. Zhang, P. A. Sharma, E. J. Lavernia and N. Yang, J. Mater. Res., 26(3), 475 (2011). https://doi.org/10.1557/jmr.2010.67
  15. A. A. Joraide, J. Mater. Sci., 30, 744 (1995). https://doi.org/10.1007/BF00356337
  16. X. A. Fan, J. Y. Yang, W. Zhu, H. S. Yun, R. G. Chen, S. Q. Bao and X. K. Duan, J. Alloy. Comp., 420, 256 (2006). https://doi.org/10.1016/j.jallcom.2005.10.025
  17. J. Seo, C. Lee and K. Park, J. Mater. Sci.,35, 1549 (2000). https://doi.org/10.1023/A:1004713920086
  18. C. D. Moon, S. -J. Hong, D. -H. Kim and T. -S Kim, J. Kor. Powd. Metal. Inst., 17(6), 494 (2010) (in Korean). https://doi.org/10.4150/KPMI.2010.17.6.494
  19. L. D. Zhao, B. -P. Zhang, J. -F. Li, H. L. Zhang and W. S. Liu, Solid State Sci., 10, 651 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.10.022

Cited by

  1. Reliability analysis of stainless steel/carbon steel double-layered tube on the basis of thermal deformation behavior vol.27, pp.5, 2013, https://doi.org/10.1007/s12206-013-0310-9