DOI QR코드

DOI QR Code

천연 및 인공원료로부터 제조한 생체친화형 하이드록시아파타이트 세라믹스

Biocompatible Hydroxyapatite Ceramics Prepared from Natural Bones and Synthetic Materials

  • 이종국 (조선대학교 신소재공학과) ;
  • 고영화 (조선대학교 신소재공학과) ;
  • 이난희 (조선대학교 신소재공학과)
  • Lee, Jong-Kook (BK21 Education Center of Mould Technology for Advanced Materials & Parts, Department of Advanced Materials Engineering, Chosun University) ;
  • Ko, Young-Hwa (BK21 Education Center of Mould Technology for Advanced Materials & Parts, Department of Advanced Materials Engineering, Chosun University) ;
  • Lee, Nan-Hee (BK21 Education Center of Mould Technology for Advanced Materials & Parts, Department of Advanced Materials Engineering, Chosun University)
  • 투고 : 2012.05.22
  • 심사 : 2012.05.31
  • 발행 : 2012.06.27

초록

Hydroxyapatite (HA) is well known as a biocompatible and bioactive material. HA has been practically applied as bone graft materials in a range of medical and dental fields. In this study, two types of dense hydroxyapatite ceramics were prepared from natural bones and synthetic materials. The biocompatibility of HA ceramics for supporting osteoblast cell growth and cytotoxicity using an in vitro MG-63 cell line model were respectively evaluated. Artificial hydroxyapatite shows relative density of 93% with 1-2 ${\mu}m$ after sintering, but a hydroxyapatite compact derived from bovine bone has low sintered density of 85% with a small content of MgO. Irrespective of the starting raw materials, both types of sintered hydroxyapatite displayed similar biocompatibility in the tests. FE-SEM observations showed that most MG-63 cells had a stellar shape and formed an intercellular matrix containing fibers on sintered HA. The cells were well attached and grown over the HA surface, indicating that there was no toxicity.

키워드

참고문헌

  1. L. L. Hench, J. Am. Ceram. Soc., 74, 1487 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  2. Y. Zhang, G. Yin, S. Zhu, D. Zhou, Y. Wang, Y. Li and L. Luo, Curr. Appl. Phys., 5, 531 (2005). https://doi.org/10.1016/j.cap.2005.01.026
  3. L. Hong, H. C. Xu and K. de Groot, J. Biomed. Mater. Res., 26, 7 (1992). https://doi.org/10.1002/jbm.820260103
  4. H. H. Jin, D. H. Kim, T. W. Kim, H. C. Park and S. Y. Yoon, Kor. J. Mater. Res., 21, 347 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.6.347
  5. D. S. Seo, H. Kim and J. K. Lee, Kor. J. Mater. Res., 14, 35 (2004) (in Korean). https://doi.org/10.3740/MRSK.2004.14.1.035
  6. S. C. Ryu, Kor. J. Mater. Res., 14, 786 (2004) (in Korean). https://doi.org/10.3740/MRSK.2004.14.11.786
  7. M. Jarcho, C. H. Bollen, M. B. Thomas, J. Bobick, J. F. Kay and R. H. Doremus, .J. Mater. Sci., 11, 2027 (1976). https://doi.org/10.1007/BF02403350
  8. J. A. M. Clemens, J. G. C. Wolke, C. P. A. T. Klein and K. de Groot, J. Biomed. Mater. Res., 48, 741 (1999). https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<741::AID-JBM21>3.0.CO;2-#
  9. Y. Yokogawa, Phosphorus Research Bulletin, 20, 33 (2006). https://doi.org/10.3363/prb.20.33
  10. Y. Li, X. Zhang and K. de Groot, Biomaterials, 18, 737 (1997). https://doi.org/10.1016/S0142-9612(96)00203-7
  11. C. Y. Ooi, M. Hamdi and S. Ramesh, Ceram. Int., 33, 1171 (2007) https://doi.org/10.1016/j.ceramint.2006.04.001
  12. Y. G. Kim, D. S. Seo and J. K. Lee, Appl. Surf. Sci., 255, 589 (2008). https://doi.org/10.1016/j.apsusc.2008.06.089
  13. Y. G. Kim, D. S. Seo and J. K. Lee, J. Phys. Chem. Solid., 69, 1556 (2008). https://doi.org/10.1016/j.jpcs.2007.10.102
  14. A. Doostmohammadi, A. Monshi, R. Salehi, M. H. Fathi, S. Karbasi, U. Pieles and A. U. Daniels, Mater. Chem. Phys., 132, 446 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.051
  15. J. Jeong, Y. K. Kang, H. W. Song, O. J. Han, I. Y. Ok, J. S. Jung, J. M. Oh, T. U. Park and J. H. Choy, J. Korean Orthop. Assoc., 39, 56 (2004) (in Korean). https://doi.org/10.4055/jkoa.2004.39.1.56
  16. A.Y. Pataquiva Mateus, M. P. Ferraz and F.J. Monteiro, Key Eng. Mater., 330, 243 (2007). https://doi.org/10.4028/www.scientific.net/KEM.330-332.243
  17. F. Chen, Z. C. Wang and C. J. Lin, Mater. Lett., 57, 858 (2002). https://doi.org/10.1016/S0167-577X(02)00885-6
  18. S. M. Kuo, S. J. Chang, C. C. Ho, S. F. Chen and L. C. Lin, in Proceedings of the 27th Annual International Conference of the IEEE-EMBS 2005(Shanghai, China, September 2005) p. 1248.
  19. D. A. Wahl and J. T. Czernuszka, Eur. Cell. Mater., 11, 43 (2006).
  20. D. R. Carter and D. M. Spengler, Clin. Orthop. Relat. Res., 135, 192 (1978).
  21. J. Y. Rho, L. K. Spearing and P. Zioupos, Med. Eng. Phys., 20, 92 (1998). https://doi.org/10.1016/S1350-4533(98)00007-1
  22. D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos and Y. F. Missirlis, Biomaterials, 22, 87 (2000). https://doi.org/10.1016/S0142-9612(00)00174-5
  23. W. F. Zambuzzi, C..V. Ferreira, J..M. Granjeiro and H. Aoyama, J. Biomed. Mater. Res., 97A, 193 (2011). https://doi.org/10.1002/jbm.a.32933