DOI QR코드

DOI QR Code

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun (School of Nano & Advanced Materials Engineering, Changwon National Univ.) ;
  • Bae, Dong-Sik (School of Nano & Advanced Materials Engineering, Changwon National Univ.)
  • Received : 2012.05.26
  • Accepted : 2012.06.11
  • Published : 2012.06.27

Abstract

Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.

Keywords

References

  1. G. Schmid, Chem. Rev., 92, 1709 (1992). https://doi.org/10.1021/cr00016a002
  2. J. L. Bars, U. Specht, J. S. Bradley and D. G. Blackmond, Langmuir, 15, 7621 (1999). https://doi.org/10.1021/la990144v
  3. Y. Li, X. M. Hong, D. M. Collard and M. A. El-Sayed, Org. Lett., 2, 2385 (2000). https://doi.org/10.1021/ol0061687
  4. Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 105, 8938 (2001). https://doi.org/10.1021/jp010904m
  5. J. Dai and M. L. Bruening, Nano Lett., 2, 497 (2002). https://doi.org/10.1021/nl025547l
  6. J. W. Yoo, D. Hathcock and M. A. El-Sayed, J. Phys. Chem., 106, 2049 (2002). https://doi.org/10.1021/jp0121318
  7. R. A. Reynolds, C. A. Mirkin and R. L. Letsinger, J. Am. Chem. Soc., 122, 3795 (2000). https://doi.org/10.1021/ja000133k
  8. D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, S. C. Williams and A. P. Alivisatos, J. Phys. Chem. B, 106, 11758 (2002). https://doi.org/10.1021/jp026144c
  9. J. M. Nam, S. J. Park and C. A. Mirkin, J. Am. Chem. Soc., 124, 3820 (2002). https://doi.org/10.1021/ja0178766
  10. P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine and M. Broyer, J. Phys. Chem. B, 103, 8706 (1999).
  11. C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, Nature, 382, 607 (1996). https://doi.org/10.1038/382607a0
  12. M. Han, X. Gao, J. Z. Su and S. Nie, Nat. Biotechnol., 19, 631 (2001). https://doi.org/10.1038/90228
  13. S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science, 287, 1989 (2000). https://doi.org/10.1126/science.287.5460.1989
  14. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha and H. A. Atwater, Adv. Mater., 13, 1501 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  15. W. P. McConnell, J. P. Novak, L. C. Brousseau III, R. R. Fuierer, R. C. Tenent and D. L. Feldheim, J. Phys. Chem. B, 104, 8925 (2000). https://doi.org/10.1021/jp000926t
  16. S. Chen and Y. Yang, J. Am. Chem. Soc., 124, 5280 (2002). https://doi.org/10.1021/ja025897+
  17. G. De1, L. Tapfer, M. Catalano, G. Battaglin, F. Caccavale, F. Gonella, P. Mazzoldi and R. F. Haglund, Appl. Phys. Lett., 68, 3820 (1996). https://doi.org/10.1063/1.116628
  18. T. Kokugan, A. Trianto and H. Takeda, J. Chem. Eng. Jpn., 31, 596 (1998). https://doi.org/10.1252/jcej.31.596
  19. Y. Wang and N. Herron, J. Phys. Chem., 95, 525 (1991). https://doi.org/10.1021/j100155a009
  20. Y. M. Tricot and J. H. Fendler, J. Phys. Chem., 90, 3369 (1986). https://doi.org/10.1021/j100406a013
  21. Y. Wang and W. Mahler, Optic. Comm., 61, 233 (1987). https://doi.org/10.1016/0030-4018(87)90145-3
  22. N. Ichinose, Introduction to Fine Ceramics: Applications in Engineering, p. 3, John Wiley & Sons, New York, USA (1987).
  23. N. Ichinose, Y. Ozaki and S. Kashu, Superfine Particle Technology, p. 24, Springer, New York, USA (1988).
  24. C. J. Brinker and G. W. Scherer, Sol-Gel Science : The Physics and Chemistry of Sol-Gel Processing, p. 2, Academic Press, San Diego, USA (1990).
  25. A. E. Neeves and M. H. Birnboim, J. Opt. Soc. Am. B, 6, 787 (1989). https://doi.org/10.1364/JOSAB.6.000787
  26. K. Osseo-Asare and F. J. Arrigada, Ceramic Trans., 12, 3 (1990).
  27. T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham and J. H. Adair, Langmuir, 15, 4328 (1999). https://doi.org/10.1021/la970801o

Cited by

  1. Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application vol.22, pp.7, 2012, https://doi.org/10.3740/MRSK.2012.22.7.362